
Data 188: Introduction to Deep Learning

Manual Neural Networks

Speaker: Eric Kim

Lecture 03 (Week 02)

2026-01-27, Spring 2026. UC Berkeley.

1

Acknowledgement: slides are based on CMU's Deep Learning Systems course

(10-414/714, Fall 2025). Thanks to: Prof. Zico Kolter, Prof. Tianqi Chen, Prof.

Tim Dettmers.

https://dlsyscourse.org/

Announcements

• HW0 continues! Due Feb 5th (~1.5 weeks away)

• Submit on Gradescope

• Discussion and office hours starts this week! See the course page for times and

locations.

• Ask questions on Edstem!

2

https://data-188-berkeley.github.io/sp26/calendar/

Outline

From linear to nonlinear hypothesis classes

Neural networks

Backpropagation (i.e., computiing gradients)

3

Outline

From linear to nonlinear hypothesis classes

Neural networks

Backpropagation (i.e., computiing gradients)

4

The trouble with linear hypothesis classes

Recall that we needed a hypothesis

function to map inputs in ℝ𝑛 to outputs

(class logits) in ℝ𝑘, so we initially used the

linear hypothesis class

ℎ𝜃 𝑥 = 𝜃𝑇𝑥, 𝜃 ∈ ℝ𝑛×𝑘

This classifier essentially forms 𝑘 linear

functions of the input and then predicts

the class with the largest value: equivalent

to partitioning the input into 𝑘 linear

regions corresponding to each class

5

𝑥1

𝑥2

What about nonlinear classification boundaries?

What if we have data that cannot be

separated by a set of linear regions?

We want some way to separate these

points via a nonlinear set of class

boundaries

One idea: apply a linear classifier to

some (potentially higher-dimensional)

features of the data

ℎ𝜃 𝑥 = 𝜃𝑇𝜙 𝑥
𝜃 ∈ ℝ𝑑×𝑘 , 𝜙: ℝ𝑛 → ℝ𝑑

6

𝑥1

𝑥2

How do we create features?

How can we create the feature function 𝜙?

1. Through manual engineering of features relevant to the problem (the “old”

way of doing machine learning)

2. In a way that itself is learned from data (the “new” way of doing ML)

Question: what if we just again use a linear function for 𝜙? Good idea/bad idea?

𝜙(𝑥) = 𝑊𝑇𝑥

7

Recall: the composition of linear

functions is another linear function

Answer: Bad idea, because it is just equivalent to another linear classifier. We

haven't increased the model's expressiveness/power:

ℎ𝜃 𝑥 = 𝜃𝑇𝜙 𝑥 = 𝜃𝑇𝑊𝑇𝑥 = ෨𝜃𝑥

Nonlinear features

But what does work? … essentially any nonlinear function of linear features

𝜙 𝑥 = 𝜎(𝑊𝑇𝑥)

where 𝑊 ∈ ℝ𝑛×𝑑, and 𝜎: ℝ𝑑 → ℝ𝑑 is essentially any nonlinear function (often an

element-wise operation for simplicity)

Example: let 𝑊 be a (fixed) matrix of random Gaussian samples, and let 𝜎 be the

cosine function ⟹ “random Fourier features” (work great for many problems)

But maybe we want to train 𝑊 to minimize loss as well? Or maybe we want to

compose multiple features together?

8

Outline

From linear to nonlinear hypothesis classes

Neural networks

Backpropagation (i.e., computiing gradients)

9

Neural networks / deep learning

A neural network refers to a particular type of hypothesis class, consisting of

multiple, parameterized differentiable functions (a.k.a. “layers”) composed

together in any manner to form the output

The term stems from biological inspiration, but at this point, literally any hypothesis

function of the type above is referred to as a neural network

“Deep network” is just a synonym for “neural network,” and “deep learning” just

means “machine learning using a neural network hypothesis class” (let’s cease

pretending that there is any requirements on depth beyond “just not linear”)

• But it’s also true that modern neural networks involve composing together a

lot of functions, so “deep” is typically an appropriate qualifier

10

The “two layer” neural network

We can begin with the simplest form of neural network,

basically just the nonlinear features proposed earlier, but

where both sets of weights are learnable parameters

ℎ𝜃 𝑥 = 𝑊2
𝑇𝜎 𝑊1

𝑇𝑥
𝜃 = {𝑊1 ∈ ℝ𝑛×𝑑 , 𝑊2 ∈ ℝ𝑑×𝑘}

where 𝜎: ℝ → ℝ is a nonlinear function applied

elementwise to the vector (e.g. sigmoid, ReLU)

Written in batch matrix form

ℎ𝜃 𝑋 = 𝜎 𝑋𝑊1 𝑊2

11

Jargon: d is commonly called the

"hidden dim" of the model.

[n]

input dim
[d] [k]

logits

X.shape=[batchsize, n]

W_1.shape=[n, d]

W_2.shape=[d, k]

ℎ𝜃 𝑋 .shape=[batchsize, k]

Universal function approximation (1/2)

Theorem (1D case): Given any smooth function 𝑓: ℝ → ℝ, closed region 𝒟 ⊂ ℝ,

and 𝜖 > 0, we can construct a one-hidden-layer neural network መ𝑓 such that

max
𝑥∈𝒟

𝑓 𝑥 − መ𝑓 𝑥 ≤ 𝜖

Proof: Select some dense sampling of points 𝑥 𝑖 , 𝑓 𝑥 𝑖 over 𝒟. Create a

neural network that passes exactly through these points (see next slide). Because

the neural network function is piecewise linear, and the function 𝑓 is smooth, by

choosing the 𝑥 𝑖 close enough together, we can approximate the function

arbitrarily closely.

12

Universal function approximation (2/2)

Assume one-hidden-layer ReLU network (w/ bias):

መ𝑓 𝑥 = ෍

𝑖=1

𝑑

± max{0, 𝑤𝑖𝑥 + 𝑏𝑖}

Visual construction of approximating function.

13

Idea: given N points, fit (N-1)

functions fi x = max{0, 𝑤𝑖𝑥 + 𝑏𝑖}
such that sum of these (N-1)

functions yields a piecewise-linear

fit to the N points.

Note: one can construct

max{0, 𝑤𝑖𝑥 + 𝑏𝑖} to connect two

points.

f2 x

f1 x

(optional) For an alternate

visual + interactive

visualization, see "A visual

proof that neural nets can

compute any function".

Main takeaway: a sufficiently

wide (and/or deep) neural

network can fit any* function

with arbitrary precision.

* for smooth, continuous functions

Gives us (some) confidence

that pursuing NN's is a

justified path forward for

learning highly complicated

functions (eg image

classification models).

Aside: this proof/result is not very practical, so don't read too much into it.

Boils down to "abusing" NN's into a nearest-neighbor interpolator.

http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

Fully-connected deep networks

Idea: generalize two-layer network to L-layers ("keep
stacking layers!")

A.k.a: "Multi-layer perceptron" (MLP), feedforward
network, fully-connected network. In batch form:

𝑍𝑖+1 = 𝜎𝑖 𝑍𝑖𝑊𝑖 , 𝑖 = 1, … , 𝐿
𝑍1 = 𝑋,
ℎ𝜃 𝑋 = 𝑍𝐿+1

[𝑍𝑖 ∈ ℝ𝑏×𝑛𝑖 , 𝑊𝑖 ∈ ℝ𝑛𝑖×𝑛𝑖+1]

with nonlinearities 𝜎𝑖: ℝ → ℝ applied elementwise, and
parameters

𝜃 = {𝑊1, … , 𝑊𝐿}

(Can also optionally add bias term)
14

𝑧𝑖+1 = 𝜎𝑖 𝑧𝑖𝑊𝑖 + 𝑏𝑖

"bias", aka learned

offset term

Scaling NN's: width vs depth

Two ways to make an MLP "bigger":

1. Increase depth (eg add more layers)

2. Increase width

15

𝑊3

𝑊1.shape=[n, d=200]

𝑊2.shape=[d=200, k]𝑊1.shape=[n, d=100]

𝑊2.shape=[d=100, k]

X.shape=[b, n]

ℎ𝜃 𝑋 = 𝜎 𝑋𝑊1 𝑊2

Aka "double the width"

𝑊1.shape=[n, d1=100]

𝑊2.shape=[d1=100, d2=100]

𝑊3.shape=[d2=100, k]

Note: in theory d1 doesn't

have to equal d2!

ℎ𝜃 𝑋 = 𝜎 𝜎 𝑋𝑊1 𝑊2 𝑊3

ℎ𝜃 𝑋 = 𝜎 𝑋𝑊1 𝑊2

More

depth

More

width

Winner: depth
The deep learning field has generally gravitated towards deeper model architectures

rather than wider. Ex: ResNet-50, 101, 152 have 50/101/152 layers!

16
Figure from original Resnet paper, "Deep Residual Learning for Image Recognition".

Context: VGG-19 was a

previous state-of-the-art

image classifier,

surpassed by resnet and

its significantly more

layers (increased depth)

Empirically: deeper

(rather than wider)

networks generally

gives you better

results while keeping

compute/num-

parameters smaller.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556

Why deep networks?

17

They work like

the brain!

… no they don’t!

Deep circuits are

provably more

efficient!

… at representing

functions neural networks

cannot actually learn

(e.g. parity)!

Empirically it seems like

they work better for a

fixed parameter count!

… okay!

Aside: deep learning is largely driven by empirical

findings. Very little formal guarantees. Aka "we

tried out X, and it worked really well!"

In reality: "we tried X on dataset Y. No guarantee

that X will work on a different dataset Z!"

Outline

From linear to nonlinear hypothesis classes

Neural networks

Backpropagation (i.e., computiing gradients)

18

Neural networks in machine learning

Recall that neural networks just specify one of the “three” ingredients” of a

machine learning algorithm, also need:

• Loss function: still cross entropy loss, like last time

• Optimization procedure: still SGD, like last time

In other words, we still want to solve the optimization problem

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ𝑐𝑒 ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

using SGD, just with ℎ𝜃(𝑥) now being a neural network

Requires computing the gradients ∇𝜃ℓ𝑐𝑒 ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖 for each element of 𝜃
19

The gradient(s) of a two-layer network (W2)
Let’s do the gradient w.r.t. 𝑊2…

20

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊2
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊2
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑊2

(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

Note: unlike previous single-layer

derivation, here I am writing x as a

row vector (not as a column

vector!). This is to make

extending to batched X easier.

The gradient w.r.t. 𝑊2 looks identical to the softmax

regression case.

From previous lecture's derivation, the gradient is

∇𝑊2
ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦 = 𝑧1

𝑇(softmax 𝑧2 − 𝑒𝑦)

When extended to minibatch X (shape=[batchsize, n]), we get:

∇𝑊2
ℓ𝑐𝑒 𝜎 𝑋𝑊1 𝑊2, 𝑦 = 𝑍1

𝑇(softmax 𝑍2 − 𝐼𝑦)
𝑆 = sof𝑡𝑚𝑎𝑥 𝜎 𝑋𝑊1 𝑊2

𝐼𝑦 is one-hot vectors, stacked
= 𝜎 𝑋𝑊1

𝑇 𝑆 − 𝐼𝑦

The gradient(s) of a two-layer network (W1) (1/4)

Deep breath and let’s do the gradient w.r.t. 𝑊1…

21

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
= (softmax 𝑧2 − 𝑒𝑦)

𝜕𝑧2

𝜕𝑧1
=

𝜕𝑧1𝑊2

𝜕𝑧1
= 𝑊2

𝑇

Note: x is a row vector (not as a

column vector!)
Approach: I'm going to calculate left to right (sort of like `reduce()` fn...)

𝑧1𝑊2 = 𝑧1𝑊2 : , 0 𝑧1𝑊2 : , 1 …

Observation: i-th entry of 𝑧1𝑊2 only

depends on i-th column of 𝑊2

𝜕 𝑧1𝑊2

𝜕𝑧1
0, : = 𝑊2 : , 0 𝑇

𝜕 𝑧1𝑊2

𝜕𝑧1
1, : = 𝑊2 : , 1 𝑇

...

𝜕 𝑧1𝑊2

𝜕𝑧1
= 𝑊2

𝑇

Short proof:

The gradient(s) of a two-layer network (W1) (2/4)

22

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1
(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
= (softmax 𝑧2 − 𝑒𝑦)

𝜕𝑧2

𝜕𝑧1
=

𝜕𝑧1𝑊2

𝜕𝑧1
= 𝑊2

𝑇

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

So far, we've computed:

Observe this identity (due to the chain

rule). So we can simplify (reduce) the

main equation by one term:

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
= softmax 𝑧2 − 𝑒𝑦 𝑊2

𝑇

The gradient(s) of a two-layer network (W1) (3/4)

23

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1
(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝜎 𝑧0

𝜕𝑧0

𝜕𝜎 𝑧0

𝜕𝑧0
0, : = ƴ𝜎 𝑧0 0 0 … 0

𝜕𝜎 𝑧0

𝜕𝑧0
1, : = 0 ƴ𝜎 𝑧0 1 … 0

...= ෍

𝑖=1

𝑑
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
0, 𝑖 ⋅ (

𝜕𝜎 𝑧0

𝜕𝑧0
)[𝑖, :]

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
∘ ƴ𝜎 𝑧0

𝜕𝜎 𝑧0

𝜕𝑧0
 has nice

structure:

where ∘ denotes elementwise multiplication

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
= softmax 𝑧2 − 𝑒𝑦 𝑊2

𝑇 ∘ ƴ𝜎 𝑧0

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
= softmax 𝑧2 − 𝑒𝑦 𝑊2

𝑇

Next, let's proceed and multiply

the left-most two terms...

ƴ𝜎 𝑧0 is the elementwise

application of this scalar sigmoid

derivative: ƴ𝜎 𝑥 = 𝜎 𝑥 (1 − 𝜎 𝑥)

The gradient(s) of a two-layer network (W1) (4/4)

24

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1
(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
⋅

𝜕𝑥𝑊1

𝜕𝑊1

= 𝑥𝑇(
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
)

where ∘ denotes elementwise multiplication

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
= softmax 𝑧2 − 𝑒𝑦 𝑊2

𝑇 ∘ ƴ𝜎 𝑧0

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
= softmax 𝑧2 − 𝑒𝑦 𝑊2

𝑇

(by similar argument for single-

layer softmax derivation)

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
= 𝑥𝑇 softmax 𝑧2 − 𝑒𝑦 𝑊2

𝑇 ∘ ƴ𝜎 𝑧0

𝜕ℓ𝑐𝑒 𝑍2, 𝑦

𝜕𝑊1
= 𝑋𝑇 softmax 𝑍2 − 𝐼𝑦 𝑊2

𝑇 ∘ ƴ𝜎 𝑍0

Extend to minibatch

(shape=[batchsize, n])

Next, let's proceed and multiply

the left-most two terms...

(...phew!) 𝐿𝑒𝑡 𝑍0 = 𝑋𝑊1, 𝑍1 = 𝜎 𝑍0 , 𝑍2 = 𝑍1𝑊2

Idea: you may have seen some

patterns here. Is it possible to

generalize these calculations, say

to different model architectures?

Abstraction V0 (1/2)

25

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

x 𝑧0
𝑧1 𝑧2

𝑊1
𝑊2

Linear1 𝜎 Linear2 ℓ𝑐𝑒

Ex: for "Linear2",
𝜕𝑧2

𝜕𝑧1
 is

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡

Observation: many terms in
𝜕ℓ𝑐𝑒 𝑧2,𝑦

𝜕𝑊1
 is

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡
 for each operator ("layer"):

Abstraction idea: for each

operation type ("layer"), define

how to compute
𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡
.

Ex: for Linear layer

𝑧 = 𝑥𝑊:
𝜕𝑧

𝜕𝑥
= 𝑊𝑇

(derived previously)

class Linear(Layer):
 def gradient_v0(self) -> np.ndarray:
 # calculate d_out/d_in
 dout_din = self.W.T
 return dout_din

Abstraction V0 (2/2)

26

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

(optional, rewrite to clean things up)

𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

x 𝑧0
𝑧1 𝑧2

𝑊1
𝑊2

Linear1 𝜎 Linear2 ℓ𝑐𝑒

Observation: each term in
𝜕ℓ𝑐𝑒 𝑧2,𝑦

𝜕𝑊1
 is

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡
 for each operator ("layer"):

Abstraction idea: for each

operation type ("layer"), define

how to compute
𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡
.

Ex: for Linear layer

𝑧 = 𝑥𝑊:

𝜕𝑧[0]

𝜕𝑊
=

⋮ ⋮ ⋮ ⋮
𝑥 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝜕𝑧[1]

𝜕𝑊
=

⋮ ⋮ ⋮ ⋮
0 𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋮

Note: shape is [1, d*k], but for clarity I've

reshaped to [d, k]

...

(derived from previous lecture)

...but previously we saw that directly instantiating
𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑝𝑎𝑟𝑎𝑚
 can be too slow to be practical (ex: Linear layer!)

class Linear(Layer):
 def gradient_v0(self) -> np.ndarray:
 # calculate d_out/d_in
 dout_din = self.W.T
 return dout_din
 # calculate dout/dW
 dout_dW = np.zeros(
 (len(z), math.prod(W.shape))
)
 # ...calculate big term...
 return dout_din, dout_dW

Important: for layers with model

parameters, we need to also

define how to compute
𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑝𝑎𝑟𝑎𝑚

Efficient abstraction: vector-Jacobian product

27

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

(optional, rewrite to clean things up)
𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

Optimization: calculate product "left to right" (`reduce`-like).

Always involves "vector x matrix -> vector" products (aka "vector-Jacobian product").

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1

Performant abstraction: for each layer, compute:
𝜕𝑙𝑜𝑠𝑠

𝜕𝑖𝑛𝑝𝑢𝑡
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
∙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡

If the layer has model parameters, also compute:
𝜕𝑙𝑜𝑠𝑠

𝜕𝑝𝑎𝑟𝑎𝑚
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
∙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑝𝑎𝑟𝑎𝑚

class Linear(Layer):
 def gradient(self, dloss_dout: np.ndarray) -> tuple[np.ndarray]:
 # calculate dloss_dout @ dout/dinput
 dloss_dout = dloss_dout @ self.W.T
 # calculate dloss_dout @ dout/dW
 dloss_dW = x.T @ dloss_dout
 return dloss_dout, dloss_dW

𝜕𝑙𝑜𝑠𝑠

𝜕𝑊
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
⋅

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑊
= 𝑥𝑇(

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
)

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
⋅

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
𝑊𝑇

dloss_dout is called the "upstream" gradient, and is

the left-hand-side term in the chain rule reduction

Linear layer gradient "recipe"

Backprop pseudocode: two layer MNIST classifier

28

initialize layers
linear1 = Linear(in=28*28, out=64)
linear2 = Linear(in=64, out=10)
elem_sigmoid = ElemSigmoid()
loss_ce = CrossEntropyLoss(num_classes=10)

forward
x = training_images[:batchsize, :]
y = training_labels[:batchsize]
z0 = linear1.forward(x)
z1 = elem_sigmoid.forward(z0)
z2 = linear2.forward(z1) # logits
loss_val = loss_ce.forward(z2, y)

backward
dloss_dz2 = loss_ce.backward()
dloss_dz1, dloss_dW2 = linear2.backward(dloss_dz2)
dloss_dz0 = elem_sigmoid.backward(dloss_dz1)
dloss_dx, dloss_dW1 = linear1.backward(dloss_dz0)

update params
W1 = W1 - stepsize * dloss_dW1
W2 = W2 - stepsize * dloss_dW2

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧1
⋅

𝜕𝑧1

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧0
⋅

𝜕𝑧0

𝜕𝑊1

=
𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊1

𝜕ℓ𝑐𝑒 𝜎 𝑥𝑊1 𝑊2, 𝑦

𝜕𝑊2
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑊2
=

𝜕ℓ𝑐𝑒 𝑧2, 𝑦

𝜕𝑧2
⋅

𝜕𝑧2

𝜕𝑊2

(optional, rewrite to clean things up)
𝐿𝑒𝑡 𝑧0 = 𝑥𝑊1, 𝑧1 = 𝜎 𝑧0 , 𝑧2 = 𝑧1𝑊2

Goal: understand the mapping

between code and math!

Performant abstraction: for each layer, compute:
𝜕𝑙𝑜𝑠𝑠

𝜕𝑖𝑛𝑝𝑢𝑡
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
∙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑖𝑛𝑝𝑢𝑡

If the layer has model parameters, also compute:
𝜕𝑙𝑜𝑠𝑠

𝜕𝑝𝑎𝑟𝑎𝑚
=

𝜕𝑙𝑜𝑠𝑠

𝜕𝑜𝑢𝑡𝑝𝑢𝑡
∙

𝜕𝑜𝑢𝑡𝑝𝑢𝑡

𝜕𝑝𝑎𝑟𝑎𝑚

Next: we will generalize this idea to arbitrary

model architectures, via "computation graphs"!

	Intro
	Slide 1: Data 188: Introduction to Deep Learning Manual Neural Networks
	Slide 2: Announcements
	Slide 3: Outline

	From linear to nonlinear hypothesis classes
	Slide 4: Outline
	Slide 5: The trouble with linear hypothesis classes
	Slide 6: What about nonlinear classification boundaries?
	Slide 7: How do we create features?
	Slide 8: Nonlinear features

	Neural networks
	Slide 9: Outline
	Slide 10: Neural networks / deep learning
	Slide 11: The “two layer” neural network
	Slide 12: Universal function approximation (1/2)
	Slide 13: Universal function approximation (2/2)
	Slide 14: Fully-connected deep networks
	Slide 15: Scaling NN's: width vs depth
	Slide 16: Winner: depth
	Slide 17: Why deep networks?

	Backpropagation (i.e., computiing gradients)
	Slide 18: Outline
	Slide 19: Neural networks in machine learning
	Slide 20: The gradient(s) of a two-layer network (W2)
	Slide 21: The gradient(s) of a two-layer network (W1) (1/4)
	Slide 22: The gradient(s) of a two-layer network (W1) (2/4)
	Slide 23: The gradient(s) of a two-layer network (W1) (3/4)
	Slide 24: The gradient(s) of a two-layer network (W1) (4/4)
	Slide 25: Abstraction V0 (1/2)
	Slide 26: Abstraction V0 (2/2)
	Slide 27: Efficient abstraction: vector-Jacobian product
	Slide 28: Backprop pseudocode: two layer MNIST classifier

