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Announcements

« HWO continues! Due Feb 5th (~1.5 weeks away)
e Submit on Gradescope

* Discussion and office hours starts this week! See the course page for times and
locations.

e Ask questions on Edstem!


https://data-188-berkeley.github.io/sp26/calendar/
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From linear to nonlinear hypothesis classes
Neural networks

Backpropagation (i.e., computiing gradients)
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From linear to nonlinear hypothesis classes



The trouble with linear hypothesis classes

Recall that we needed a hypothesis
function to map inputs in R™ to outputs
(class logits) in R, so we initially used the
linear hypothesis class

hg(x) = 07x, 0 € RXK

This classifier essentially forms k linear
functions of the input and then predicts
the class with the largest value: equivalent
to partitioning the input into k linear
regions corresponding to each class




\What about nonlinear classification boundaries?

What if we have data that cannot be
separated by a set of linear regions?

We want some way to separate these
points via a nonlinear set of class
boundaries

One idea: apply a linear classifier to
some (potentially higher-dimensional)
features of the data

hg(x) = 6" p(x)
6 € R**k ¢: R"* - R%
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How do we create features?

How can we create the feature function ¢?

1. Through manual engineering of features relevant to the problem (the “old”
way of doing machine learning)

2. In a way that itself is learned from data (the "new” way of doing ML)

Question: what if we just again use a linear function for ¢? Good idea/bad idea?
p(x) =W'x

Answer: Bad idea, because it is just equivalent to another linear classifier. We
haven't increased the model's expressiveness/power:
ho(x) =0Tp(x) = 0TWTx = Ox

Recall: the composition of linear
functions is another linear function



Nonlinear features

But what does work? ... essentially any nonlinear function of linear features

¢(x) = a(W'x)
where W € R™¢, and o: R —» R is essentially any nonlinear function (often an
element-wise operation for simplicity)

Example: let W be a (fixed) matrix of random Gaussian samples, and let o be the
cosine function = “random Fourier features” (work great for many problems)

But maybe we want to train W to minimize loss as well? Or maybe we want to
compose multiple features together?
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Neural networks



Neural networks / deep learning

A neural network refers to a particular type of hypothesis class, consisting of
multiple, parameterized differentiable functions (a.k.a. “layers”) composed
together in any manner to form the output

The term stems from biological inspiration, but at this point, literally any hypothesis
function of the type above is referred to as a neural network

“Deep network™ is just a synonym for “neural network,” and “deep learning” just
means “machine learning using a neural network hypothesis class” (let’'s cease
pretending that there is any requirements on depth beyond “just not linear”)

« But it's also true that modern neural networks involve composing together a
lot of functions, so “deep” is typically an appropriate qualifier

10



The “two layer’ neural network

We can begin with the simplest form of neural network,
basically just the nonlinear features proposed earlier, but
where both sets of weights are learnable parameters

ho(x) = WZTU(W1Tx)

6 = {W, € R™4 W, € R*K) W1
where g: R — R is a nonlinear function applied <L >
elementwise to the vector (e.g. sigmoid, RelLU) -
Written in batch matrix form [n]

input dim

he(X) = o(XW1)W,

X.shape=[batchsize, n]
W_1.shape=[n, d]
W_2.shape=[d, k]

hg (X).shape=[batchsize, k]

e’

[d]

hg

S

[k]
logits

Jargon: d is commonly called the
"hidden dim" of the model.
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Universal function approximation (1/2)

Theorem (1D case): Given any smooth function f: R — R, closed region D c R,
and € > 0, we can construct a one-hidden-layer neural network f such that

max|f (x) — f(x)] < €

Proof: Select some dense sampling of points (x(i),f(x(i))) over D. Create a

neural network that passes exactly through these points (see next slide). Because
the neural network function is piecewise linear, and the function f is smooth, by

choosing the x close enough together, we can approximate the function
arbitrarily closely.

12



Universal function approximation (2/2)

Main takeaway: a sufficiently
wide (and/or deep) neural
network can fit any* function

d
f(x) = z + max{0, w;x + b;} with arbitrary precision.
=1

Gives us (some) confidence
that pursuing NN's is a

Visual construction of approximating function. justified path forward for
learning highly complicated

Assume one-hidden-layer ReLU network (w/ bias):

| - 4 functions (eg image
ldea: given N points, fit (N-1) classification models).
functions f;(x) = max{0,w;x + b;}
such that sum of these (N-1)
functions yields a piecewise-linear f (33 ) * for smooth, continuous functions
fit to the N points. \Q\ £,(x)
Note: one can construct Vd ' (optional) For an alternate
max{0, w;x + b;} to connect two 0 visual + interactive
points ! > visualization, see "A visual
' proof that neural nets can
4 compute any function".

Aside: this proof/result is not very practical, so don't read too much into it.
Boils down to "abusing" NN's into a nearest-neighbor interpolator. 13


http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap4.html

Fully-connected deep networks

> 7y > ... —>{Z101

|dea: generalize two-layer network to L-layers ("keep
stacking layers!")

A.k.a: "Multi-layer perceptron” (MLP), feedforward
network, fully-connected network. In batch form:

Zi+1 — O-i(ZiWi)ii - 1, ,L

Zl — X,

hg (X) = 2141

[Z; € RP*™, W; € R™*Mi+1]
with nonlinearities g;: R = R applied elementwise, and
parameters

6 = {Wl, ey WL} "bias", aka learned

offset term

r'd

(Can also optionally add bias term)  zi+1 = ai(zWi + b) y



Scaling NN's: width vs depth

Two ways to make an MLP "bigger™:

1. Increase depth (eg add more layers)

2. Increase width

More
hg(X) = o(XW )W, depth
Wil W
a:
W, .shape=[n, d=100] 'V',Orﬁ
W, shape=[d=100, k] widt

X.shape=[b, n]

ho(X) = a(a(XW)W,)W;

W,
>

W3

H

he(X) = c(XW)W,

)

W,

>

W, .shape=[n, d1=100]
hg W,.shape=[d1=100, d2=100]
W5.shape=[d2=100, k]

Note: in theory d1 doesn't
have to equal d2!

W, .shape=[n, d=200]
W, .shape=[d=200, k]

Aka "double the width"
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Context: VGG-19 was a
previous state-of-the-art
image classifier,
surpassed by resnet and

T :9215
ndino

£ 19215
ndino

11 :921s
ndino

gz 12z
indino

96 :a21s
ndino

I 9218

ndino

[44EHE

ndino

its significantly more
layers (increased depth)

Figure from original Resnet paper, "Deep Residual Learning for Image Recognition”.
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They work like
the brain!

... ho they don't!

Why deep networks?

Deep circuits are
provably more
efficient!

... at representing
functions neural networks
cannot actually learn

(e.g. parity)!

?

Empirically it seems like
they work better for a
fixed parameter count!

... Okay!

Aside: deep learning is largely driven by empirical
findings. Very little formal guarantees. Aka "we
tried out X, and it worked really well!"

In reality: "we tried X on dataset Y. No guarantee
that X will work on a different dataset Z!"

17



Outline

Backpropagation (i.e., computiing gradients)
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Neural networks in machine learning

Recall that neural networks just specify one of the “three” ingredients” of a
machine learning algorithm, also need:

 Loss function: still cross entropy loss, like last time
« Optimization procedure: still SGD, like last time

In other words, we still want to solve the optimization problem
m
1 . .
minimize —z Lo (hg (x(‘)), y(‘))
6 m £
1=
using SGD, just with hg(x) now being a neural network

Requires computing the gradients V£, (hg(x®),y®) for each element of 6

19



The gradient(s) of a two-layer network (\W2)

Let's do the gradient w.r.t. W,...

(optional, rewrite to clean things up)

0 ce(a(xW )W, y) _ 0€c(22,y) _ 0€c(22,y) . 0z, Let zy = xWy, 2z, = 0(2y), 2, = 2, W,
oW, ow, 0z, oW, Note: unlike previous single-layer
. . . derivation, here | am writing x as a
The gradient w.r.t. W, looks identical to the softmax row vector (not as a column
: vector!). This is to make
regression Case. extending to batched X easier.

From previous lecture's derivation, the gradient is
Viv,£ce (0(xW1)W3, y) = 2] (softmax(z;) — e,)

When extended to minibatch X (shape=[batchsize, n]), we get:

szfce(U(XWﬂWz»Y) = 71 (softmax(Z,) — [)
= a(XWT(S - y)

S = softmax(a(XW,)W,)
1,, is one-hot vectors, stacked

20



The gradient(s) of a two-layer network (\W1) (1/4)

Deep breath and let’'s do the gradient w.r.t. W;...
(optional, rewrite to clean things up)

0 ce(a(xW )W, y) _ 0€ce(22,¥) _ 0€ce(22,y) 0z, 0z; 0z, Let zy = xWy,z, = 0(2y),2, = 2, W,

oW, ow; 0z, 0z, aZO oWy Note: x is a row vector (not as a
column vector!)

Approach: I'm going to calculate left to right (sort of like ‘reduce()” fn...)

04 e (23, Y)
aZZ

= (softmax(z,) — e,)

0z dz,W.
2= 1 2=W2T

0z, 0z

/

Short proof:
Wy = [ziWs[:,0]  z Wh[:, 1] ..] d(z, W)

] = . T
o 55101 = W[, 01" o) _
Observation: i-th entry of z; W, only 0(z,W,) (L] = W[ 1]7] 9z, 2

depends on i-th column of W,

21



The gradient(s) of a two-layer network (W1) (2/4)

0 ce(a(xW1) Wy, y) _ 0?ce(22,Y) _ 0€ce(22,Y) ' 0z, ' 0z, . 0z
0W1 aW1 522 521 aZO awl (optional, rewrite to clean things up)

Let Zy = le,Zl = O-(ZO)'ZZ = Z1W2

So far, we've computed:

0¢ce(22,y) 0z, 0z, W,
= — = = WrT
3z, (softmax(z;) — ey) 3z, oz, 5
08ce(23,y) 0z;  0%.0(25,)) Observe this identity (due to the chain

rule). So we can simplify (reduce) the
main equation by one term:

$ 00ce(z2,y) _ 0lee(2, )07, 0zy 0z,
oW, /822/ 0z, 0z, OW;

08ce(z2,y) _ 04ce(73,y) 021 9z 02,0 (2,,7)
awl 6Z1 aZ() an 024

0z, 074 074

= (softmax(z,) — e, )W

22



The gradient(s) of a two-layer network (W1) (3/4)

0 ce(a(xW1) Wy, y) _ 0?ce(22,Y) afce(zzy ) aZZ aZl 0z
— (optional, rewrite to clean things up)
aw, aw; 0z, azl azo 6W1 Lot 7 = 2 W 71 = 0(0). 20 = 2, W,
Next, let's proceed and multiply 0€ce(22,Y) _ 0€ce(22,y) . 0z, . 0z
the left-most two terms... oW, B 0z, 9z, OW,
04:¢(23,¥) 0zy _ 04 ce(22,y) . 00(z,) da(zp) 0,:] = [6(zo[0]) 0 0]
521 aZO 021 aZO aZO S 0
do(zy)
q 1= Gzl 0]
0€..(25,y) . 00(zy) 20
= z PP [0,i] - ( 57 )i ] a‘;(z°) has nice
i=1 1 0 structure:
af Z,, é(zq) is the .elementw?se .
= Cea(le 2 o g (ZO) daeeﬁll;ﬁ/t'e?r;?ghf jcgil)a(rls'f]:&?) where o denotes elementwise multiplication
afcea(Zle.Y) = (softmax(z,) — e, ) W7
0€ce(2y,y) 024 . 0€ce(22,y) 04,,(25,y) .
621 : aZO = aZO oz = (softmax(zz) - ey)W2 o 6(zy)
23




The gradient(s) of a two-layer network (W1) (4/4)

0 ce(a(xW1) Wy, y) _ 0?ce(22,Y) _ 0€ce(22,y) 0z, 0zy 0z
— — ) ) ) (optional, rewrite to clean things up)
aw, aw; 0z, dz; 0zy OW; Lot 7, = Wy 2 = 6(20). 20 = 2,W,

agce(ZZJ y) _ agce(zzly) . 0z

Next, let's proceed and multiply
the left-most two terms... oW, 0z, oW,

0€ce(2,Y) ' 0z . 0%ce(23,¥) ' dxW,
020 5W1 aZO 5W1

_ xT(afce (ZZ, y) (bylsimilar ?rgument.for.single— where o denotes elementwise multiplication

9z, ayer softmax derivation) aecea (Zzz, ) _ (softmax(zy) — e, )W
1
0¢ce(22,y) N T, 4
00ce(22,y) 879 _ 04ce(22,Y) T S ORIVRLED
dzy, oW,  aW,
é afcgg/zvz,y) = xT(softmax(z,) — e, )W5 © 6(z,)

Idea: you may have seen some Extend to minibatch 000 (Z5, )
(shape=[batchsize, n]) é 6—W1 = XT(SOftmaX(Zz) — y)WzT ° 6(Zy)

patterns here. Is it possible to
generalize these calculations, say
to different model architectures?

(---pheW!) Let ZO == XW]_,Z]_ - O-(ZO)'ZZ = Z1W2
24



Abstraction VO (1/2)

. . 0€.0(2,,y) . Ooutput " "
Observation: many terms in ce(2.Y) jo JOUDUL ¢ o ach operator ("layer"):
owq dinput (optional, rewrite to clean things up)

Let Zy = le,Zl = O'(Zo),Zz = 21W2

0 ce(c(xW W2, y) _ 0€ce(22,y) _ 0€ce(22,y) . 0z, . 0z, _ 0z,
é)IA/i é"4/i 67252 69251 E)ZZO é’[A/i

0z, . Jdoutput

Ex: for "Linear?2", == is —
0z4 dinput

class Linear(Layer):
def gradient_vO(self) -> np.ndarray:
# calculate d_out/d_in _ _
dout_din = self.W.T X = * Zp > Z1 > 23 »
return dout_din
Vl/]_—> Wz_’
Linear1 o Linear2 tee
Abstraction idea: for each Ex: for Linear layer oz
operation type ("layer"), define 7= xW e w
doutput Gerved previousy)
_— erivea previously

how to compute — .
dinput

25



Abstraction VO (2/2)

0€ce(z2,y) . doutput
IS —
owq dinput

(optional, rewrite to clean things up)

Observation: each term in Let zy = xWy, 2, = 0(20), 25 = 2,Wy

for each operator ("layer"):

0 ce(c(xW W2, y) _ 0€ce(22,y) _ 0€ce(22,y) . 0z, . 0z, _ 0z,
0W1 0W1 022 azl aZO 5W1
—

class Linear(Layer): et

def gradient_ve(self) -> np.ndarray: e Important: for |ayers Wlth mOdel
# calculate d_out/d_in ettt

dout_din = self.W.T T e parameters, we need to also
return dout_din ' doutput

# calculate dout/dw define how to compute
dout_dW = np.zeros(

(len(z), math.prod(W.shape))
)
# ...calculate big term...
return dout_din, dout_dW

dparam

>
v
N
o
N
=
v
N
N

W1 — WZ =
Linear1 o Linear2 Cee

Abstraction idea: for each Ex: for Linear layer 62[0]=[; - 0‘ 0z[1] [0 Pl 0]
operation type ("layer"), define z = xW: P

ow
60utput ote: shape is *k], but for clarity I've
how to Compute W Note: hapreer;bgdkt](;tEd’tL] larity |

(derived from previous lecture)

...but previously we saw that directly instantiating M can be too slow to be practical (ex: Linear layer!)

param 26



Efficient abstraction: vector-dacobian product

Optimization: calculate product "left to right" (‘reduce’-like).
Always involves "vector x matrix -> vector" products (aka "vector-Jacobian product"). {optional, rewrite to clean things up)

Let Zy = le'Zl = U(Zo),ZZ = ZIWZ

0€ce (c(xW W5, y) _ 0€ce (22, ) _ 0€ce(22,Y) . 0z, . 0z, . 0z,
0W1 0W1 022 621 020 0W1

is called the "upstream" gradient, and is
the left-hand-side term in the chain rule reduction

\ _ afce(zz; y) . 0z, . dz
074 dz, OW;

class Linear(Layer):
def gradient(self, dloss_dout: np.ndarray) -> tuple[np.ndarray]:
# calculate dloss dout @ dout/dinput
dloss_dout = dloss dout @ self.W.T .EEEL
# calculate dloss dout @ dout/dW ow;
dloss dW = x.T @ dloss_dout
return dloss dout, dloss dW __afce(zzﬁy)

oW,

Performant abstraction: for each layer, compute:

dloss dloss aoutput Linear layer gradient "recipe"
dinput - doutput dinput dloss _ _Joutput _ W
If the layer has model parameters, also compute: doutput dinput
dloss dloss  doutput dloss doutput 57

= . ) T
dparam  doutput Jparam W ETTh x'( )




# initialize layers
linearl = Linear(in=28%*28, out=64)

Backprop pseudocode: two layer MNIST classifier

(optional, rewrite to clean things up)
Let zy = xWy,z1 = 0(2y),2, = 2, W,

linear2 = Linear(in=64, out=10) afaio(xwﬁ)wéhy)__afa{zb}d__afaizb}O.azz.azl'azo

elem_
loss

sigmoid = ElemSigmoid() oW, oW 0z, 0z, 0z, OW,
ce = CrossEntropyLoss(num_classes=10)

68 ce(Z2, V) 621 0z,

# forwa I:‘d . . . Performant abstraction: for each layer, compute: 0z, aZO 6W1
= training_images|[:batchsize, :] dloss _ _dloss _doutput
y = training_labels[:batchsize] Otnput = doutput  Jinput

If the layer has model parameters, also compute:

Z0 = linear‘l.for‘war'd(x) dloss  0loss 'aoutput aZO
z1 = elem_sigmoid.forward(z0) dparam ~ doutput dparam = W
z2 = linear2.forward(z1) # logits 1
loss val = loss _ce.forward(z2, y)

back q . 0 ce(22,Y)
# backwar __755:__

dloss _dz2 = loss_ce.backward()
dloss _dzl, dloss dW2 = linear2.backward(dloss dz2)

0 e (c(xW )Wy, y) afce(ZZ'Y) afce(zzﬁ)’) aZZ

dloss_dz@ = elem _sigmoid.backward(dloss dz1l) oW, aw, 0z,
dloss_dx, dloss dWl = linearl.backward(dloss dz@)
# update params Xe—t| |=—zy— —Z —
W1l = W1 - stepsize * dloss dWl -
W2 = W2 - stepsize * dloss dw2 , S e Linear2
g - Goal: understand the mapping
between code and math! Next: we will generalize this idea to arbitrary

model architectures, via "computation graphs"! 28
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