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Announcements

• (Week 1) No discussion, no office hours

• (Week 2) Discussion and office hours starts!

• HW0 is released! Start early!

• See Ed post for more details: "HW0 released!"

• ~2 weeks to complete it

• Tip: after today's lecture, you should be able to do HW0

• Q5: we'll cover two-layer NN's in Lecture 03, but you should be able to 

still do Q5 without it IMO
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https://edstem.org/us/courses/91872/discussion/7535863


Enrollment, Waitlist

• If you're on the waitlist, and you're a DS senior that is graduating in SP26/SU26 

and needs Data 188 to fulfill the MLDM requirement: please email ds-

advising@berkeley.edu to get into the course

• For more info, see Ed post: "Regarding Enrollment, Waitlists"
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mailto:ds-advising@berkeley.edu
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https://edstem.org/us/courses/91872/discussion/7542007


Reminder: important links

Course Website: Course syllabus, lecture slides, discussion notes, homework 

assignments, staff bios, office hours times.

Edstem: where announcements are posted, and where you can ask questions.

Gradescope: Where you will submit homework assignments. Exam scores will also be 

here.

Lecture Zoom link: Zoom link for lectures, TuTh 3:30pm-5pm.

Lecture Recordings: lecture recordings will be uploaded within 1-2 days after lecture.

• Tip: this is the bCourses "Media Gallery".
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https://data-188-berkeley.github.io/sp26/syllabus/
https://edstem.org/us/courses/91872/discussion/7542007
https://www.gradescope.com/courses/1217889
https://berkeley.zoom.us/j/98594186696
https://bcourses.berkeley.edu/courses/1551684/external_tools/90481
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Machine learning as data-driven programming

Suppose you want to write a program 

that will classify handwritten drawing of 

digits into their appropriate category: 

0,1,…,9

You could, think hard about the nature of 

digits, try to determine the logic of what 

indicates what kind of digit, and write a 

program to codify this logic

(Despite being a reasonable coder, I 

don’t think I could do this very well)
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MNIST Dataset



The (supervised) ML approach: collect a training set of images with known labels 

and feed these into a machine learning algorithm, which will (if done well), 

automatically produce a “program” that solves this task

Machine learning as data-driven programming
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Training data

(       , 4)

(       , 5)

(       , 8)

⋮

Machine 
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Model ℎ
such that
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ℎ  ≈ 5

ℎ  ≈ 8

⋮



Three ingredients of a machine learning algorithm

Every machine learning algorithm consists of three different elements:

1. The hypothesis class: the “program structure”, parameterized via a set of 

parameters, that describes how we map inputs (e.g., images of digits) to 

outputs (e.g., class labels, or probabilities of different class labels)

2. The loss function: a function that specifies how “well” a given hypothesis (i.e., 

a choice of parameters) performs on the task of interest

3. An optimization method: a procedure for determining a set of parameters 

that (approximately) minimize the sum of losses over the training set
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Multi-class classification setting

Let’s consider a k-class classification setting, where we have 

• Training data: 𝑥 𝑖 ∈ ℝ𝑛, 𝑦 𝑖 ∈ {1, … , 𝑘} for 𝑖 = 1, … 𝑚

• 𝑛 = dimensionality of the input data

• 𝑘 = number of different classes / labels

• 𝑚 = number of points in the training set

Example: classification of 28x28 MNIST digits

• 𝑛 = 28 ⋅ 28 = 784 (28x28 pixel images)

• 𝑘 = 10 (digits 0-9)

• 𝑚 = 60,000
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Linear hypothesis function

Our hypothesis function maps inputs 𝑥 ∈ ℝ𝑛 to 𝑘-dimensional vectors

ℎ: ℝ𝑛 → ℝ𝑘

where ℎ𝑖(𝑥) indicates some measure of “belief” in how much likely the label is to be 

class 𝑖 (i.e., “most likely” prediction is coordinate 𝑖 with largest ℎ𝑖(𝑥)).

A linear hypothesis function uses a linear operator (i.e. matrix multiplication) for 

this transformation

ℎ𝜃 𝑥 = 𝜃𝑇𝑥

for parameters 𝜃 ∈ ℝ𝑛×𝑘
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Matrix batch notation

Often more convenient (and this is how you want to code things for efficiency) to 

write the data and operations in matrix batch form

𝑋 ∈ ℝ𝑚×𝑛 =
− 𝑥 1 𝑇

−
⋮

− 𝑥 𝑚 𝑇
−

,  𝑦 ∈ {1, … , 𝑘}𝑚 =
𝑦 1

⋮
𝑦 𝑚

Then the linear hypothesis applied to this batch can be written as

ℎ𝜃 𝑋 =
− ℎ𝜃 𝑥 1 𝑇

−

⋮
−ℎ𝜃 𝑥𝑚 𝑇 −

=
− 𝑥 1 𝑇

𝜃 −
⋮

− 𝑥 𝑚 𝑇
𝜃 −

= 𝑋𝜃
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m: batchsize

n: input dim

[m, n] [n, k]



Loss function #1: classification error

A simple loss function to use in classification is the classification error, i.e., whether 
the classifier makes a mistake or not:

ℓ𝑒𝑟𝑟 ℎ 𝑥 , 𝑦 = ቊ
0 if argmax𝑖 ℎ𝑖 𝑥 = 𝑦
1 otherwise 

We typically use this loss function to assess the quality of classifiers

Unfortunately, the error is a bad loss function to use for optimization, i.e., selecting 
the best parameters, because it is not differentiable, and its gradient has little 
information

Also known as "0/1 loss".
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0-1 loss gradient
Suppose we have 2 classes (binary classification). Let 𝑝𝑐𝑙𝑎𝑠𝑠1 denote the probability of class1. Let's 

view the plots of both the loss and its derivative:

ℓ𝑒𝑟𝑟 𝑝𝑐𝑙𝑎𝑠𝑠1, 𝑦 = 1 = ቊ
0 if 𝑝𝑐𝑙𝑎𝑠𝑠1 > 0.5
1  otherwise 
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Problem: gradient is 0 

everywhere, and 

undefined at p_class1=0.5 

(shown as infinity for 

visualization, though 

technically is undefined).

Gradient descent won't 

work!

Loss(p_class1, y=1) Gradient of Loss



Loss function #2: softmax (aka cross-entropy) loss

Let’s convert the hypothesis function to a “probability” by exponentiating and 

normalizing its entries (to make them all positive and sum to one)

𝑧𝑖 = 𝑝 label = 𝑖 =
exp ℎ𝑖 𝑥

σ𝑗=1
𝑘 exp ℎ𝑗 𝑥

⟺ 𝑧 ≡ softmax ℎ 𝑥

Then let’s define a loss to be the (negative) log probability of the true class: this is 

called softmax or cross-entropy loss 

ℓ𝑐𝑒 ℎ 𝑥 , 𝑦 = − log 𝑝 label = 𝑦 = − ℎ𝑦 𝑥 + log ෍

𝑗=1

𝑘

exp ℎ𝑗 𝑥
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Terminology: h(x) is called the "logits". They are values output by your 

model that get normalized by softmax() to probabilities.



Aside: logits

CrossEntropyLoss

In this equation, the h(x) are known as class logits:

𝑝 label = 𝑖 =
exp ℎ𝑖 𝑥

σ𝑗=1
𝑘 exp ℎ𝑗 𝑥

⟺ 𝑧 ≡ softmax ℎ 𝑥

Unlike probabilities (range [0,1]), logits are unbounded (range [-inf, +inf]).

Typically, we implement classification models by passing predicted logits (rather 

than probabilities) to loss layers (like pytorch's CrossEntropyLoss).
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Ex: for three classes, suppose our logits are: [1, -2, 3] 
>>> logits = np.array([[1, -2, 3]])
>>> probs = softmax_normalize(logits) 
>>> probs      
array([[0.11849965, 0.00589975, 0.8756006 ]])
>>> probs.sum()  # always sums to 1
np.float64(1.0)

https://docs.pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html


Binary Cross Entropy (BCE)

Special case: for binary classification (positive/negative class), can simplify 

expressions. Let h(x) be the predicted logits for the positive class:

𝑝 label = 𝑝𝑜𝑠 =
1

1 + 𝑒−ℎ(𝑥)

Then, binary cross-entropy loss is:

ℓ𝑏𝑐𝑒 ℎ 𝑥 , 𝑦 = 𝑝𝑜𝑠 = − log 𝑝 label = 𝑝𝑜𝑠 = − log(
1

1 + 𝑒−ℎ(𝑥)
)
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Aka "sigmoid" or 

"logistic" function



BCE loss gradient
Let's view the BCE loss and its gradient:
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Loss(p_class1, y=1) Gradient of Loss

ℓ𝑏𝑐𝑒 ℎ 𝑥 , 𝑦 = −log(
1

1 + 𝑒−ℎ(𝑥)
)

𝜕

𝜕ℎ(𝑥)
ℓ𝑏𝑐𝑒 ℎ(𝑥), 𝑦 = 𝑝𝑜𝑠 = −

1

𝑒ℎ(𝑥) + 1

Gradient is 

smooth, 

continuous, and 

provides a "healthy" 

training signal! 

Gradient descent 

will work well here.

Note: dots indicate logit vals where 

prob=5%, 50%, and 95% confidence.

Observation: 

gradient is large for 

confidently wrong 

preds, and small for 

correct preds. Good 

property!



The softmax regression optimization problem

The third ingredient of a machine learning algorithm is a method for solving the 

associated optimization problem, i.e., the problem of minimizing the average loss 

on the training set

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

For softmax regression (i.e., linear hypothesis class and softmax loss):

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ𝑐𝑒 𝜃𝑇𝑥 𝑖 , 𝑦 𝑖  

So how do we find 𝜃 that solves this optimization problem?
20

Means: find the model 

parameters 𝜃 that 

minimizes the training loss

model 

prediction

ground truth 

label



Definition: Jacobians

For a multi-input function, multi-output function 𝑓: ℝ𝑛 → ℝ𝑘, the Jacobian of f is defined as the collection of all partial derivatives:

∇𝑓(𝑥) ∈ ℝ𝑘×𝑛 =

𝜕𝑓 𝑥 1

𝜕𝑥1

𝜕𝑓 𝑥 1

𝜕𝑥2
⋯

𝜕𝑓 𝑥 1

𝜕𝑥𝑛

𝜕𝑓 𝑥 2

𝜕𝑥1
⋯ ⋯ ⋯

⋮ ⋮ ⋱ ⋮
𝜕𝑓 𝑥 𝑘

𝜕𝑥1
⋮ ⋯

𝜕𝑓 𝑥 𝑘

𝜕𝑥𝑛

Ex: if 𝑓 𝑥1, 𝑥2 = 𝑥1  +  3𝑥2, 2𝑥1𝑥2, 42 , 𝑓: ℝ2 → ℝ3, then its Jacobian would be:

∇𝑓 𝑥 ∈ ℝ3×2 =

𝜕 𝑥1 + 3𝑥2

𝜕𝑥1

𝜕 𝑥1 + 3𝑥2

𝜕𝑥2

𝜕 2𝑥1𝑥2

𝜕𝑥1

𝜕 2𝑥1𝑥2

𝜕𝑥2

𝜕 42

𝜕𝑥1

𝜕 42

𝜕𝑥2

=
1 3

2𝑥2 2𝑥1

0 0
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Note: this uses the "numerator" 

convention for the Jacobian, eg [k, n]. 

The "denominator" convention instead 

uses [n, k].

Different places can use different 

conventions, so take care!

In this course, we'll use the "numerator" 

convention.

Intuition: how much does 

f(x) change with respect to 

each of its inputs?

In ML: how much does my 

loss f(x) change with 

respect to each of its 

model parameters?

https://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions


Tip: Jacobian "proper" shapes

Warning: in this class, we will often work with functions that accept matrices as 
input/output. When we define the Jacobian of these matrix-valued functions, the "true" 
shape of the Jacobian is still 2D, not 3D/4D.

Example: suppose f takes an [n x k] matrix, and outputs a scalar. Its Jacobian ∇𝑓(𝑥) has 
shape [n*k, 1], where the first dimension is "flattened" (eg row-wise).

Notably, the shape of ∇𝑓 𝑥  is NOT [n, k].

However, for convenience, people sometimes represent ∇𝑓 𝑥  as a matrix (shape=[n, k]) 
rather than as a tall vector (shape=[n*k, 1]). This is fine, as long as you recognize when 
this happens!

This will be important later, where it's important to keep track of matrix/Jacobian shapes.
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(Apologies if this doesn't make much sense right now, but it will in a few days...)



Optimization: gradient descent (1/2)

For a matrix-input, scalar output function 𝑓: ℝ𝑛×𝑘 → ℝ, the gradient is defined as the 
matrix of partial derivatives

∇𝜃𝑓 𝜃 ∈ ℝ𝑛×𝑘 =

𝜕𝑓 𝜃

𝜕𝜃11
⋯

𝜕𝑓 𝜃

𝜕𝜃1𝑘

⋮ ⋱ ⋮
𝜕𝑓 𝜃

𝜕𝜃𝑛1
⋯

𝜕𝑓 𝜃

𝜕𝜃𝑛𝑘

 

Gradient points in the direction that most increases 𝑓 (locally)

In ML, 𝜃 is our model parameters, and f is our loss function. Thus, ∇𝜃𝑓 𝜃  tells us: if I want 
to minimize the loss f, in which direction should I adjust my model parameters 𝜃?
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Note: the shape is actually 

[n*k, 1], but visualized here 

as [n, k] for visual clarity



Optimization: gradient descent (2/2)

To minimize a function, the gradient descent algorithm proceeds by iteratively 

taking steps in the direction of the negative gradient

𝜃 ≔ 𝜃 − 𝛼∇𝜃𝑓 𝜃

where 𝛼 > 0 is a step size or learning rate
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𝛼 = 0.2 𝛼 = 0.42𝛼 = 0.05

𝜃1𝜃1𝜃1

𝜃
2

𝜃
2

𝜃
2

The art of picking a 

good learning rate:

Too small: overly long 

training jobs.

Too large: unstable 

training, overshooting.

In practice: set 

empirically (a 

hyperparameter), eg 

"try a bunch of step 

sizes, choose the one 

that performs best".



"Stochastic" gradient descent (aka mini-batches)

If our objective (as is the case in machine learning) is the sum of individual losses, 

we typically don’t want to compute the gradient using all examples to make a single 

update to the parameters

Instead, take many gradient steps each based upon a minibatch (small partition of 

the data), to make many parameter updates using a single “pass” over data

Repeat:
 Sample a minibatch of data 𝑋 ∈ ℝ𝐵×𝑛, 𝑦 ∈ {1, … , 𝑘}𝐵

 Update parameters 𝜃 ≔ 𝜃 −
𝛼

𝐵
෍

𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖
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Jargon:  a pass 

over the entire 

dataset is called 

an "epoch"



The gradient of the softmax objective

So, how do we compute the gradient for the softmax objective?

∇𝜃ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 =?

One way: "brute force". Write out ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 , and directly (by hand!) differentiate it 

with respect to model parameters θ. Aka "plug and chug". Labor intensive!

A more convenient way: utilize the (multivariate) chain rule to simplify calculations.
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Multivariate chain rule

Suppose we have 𝑧 =  𝑓(𝑦), 𝑦 =  𝑔(𝑥). Then:

𝜕𝑧

𝜕𝑥
 =  

𝜕𝑧

𝜕𝑦
 ∗  

𝜕𝑦

𝜕𝑥

Intuition: x changes z indirectly via intermediate function g(x). To find out how changes in x 

modify z (
𝜕𝑧

𝜕𝑥
): first find out how changes in y affect z (

𝜕𝑧

𝜕𝑦
), then scale it by how changes in x 

affect y (
𝜕𝑦

𝜕𝑥
).

Decomposes 
𝜕𝑧

𝜕𝑥
 in terms of two (hopefully easier) derivatives 

𝜕𝑧

𝜕𝑦
,

𝜕𝑦

𝜕𝑥
.
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Spoiler alert: this will 

be very useful for deep 

learning ("backprop!")

[z.shape, x.shape] [z.shape, y.shape] [y.shape, x.shape]Shapes:

Note: unlike scalar chain rule, 

these quantities are matrices, 

and this is matrix multiplication. 

See how the shapes are 

compatible with each other! 

Important to keep track of 

shapes.



Softmax gradient: chain rule (first term)

Let ℎ = 𝜃𝑇𝑥 (aka pred logits). Using the chain rule, the softmax loss gradient is:

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
 

Let’s start by computing the first term:

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ𝑖
=

𝜕

𝜕ℎ𝑖
−ℎ𝑦 + log ෍

𝑗=1

𝑘

exp ℎ𝑗

 = −1{𝑖 = 𝑦} +
exp ℎ𝑖

σ𝑗=1
𝑘 exp ℎ𝑗

In vector form: 
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕ℎ
= 𝑧 − 𝑒𝑦

𝑇
, where 𝑧 = softmax(ℎ)

28

𝑒𝑦 is the one-hot encoding of y, 

eg vector of all 0's except a 1 at 

index for ground-truth class y.

Means: 1 if i=y, 0 otherwise. Also written as: 𝜕𝑖𝑦

[1, dim(theta)] [1, k] [k, dim(theta)]

[1, 1]

[1, k]



Softmax gradient: chain rule (second term)

To compute the second term 
𝜕ℎ

𝜕𝜃
 (where ℎ = 𝜃𝑇 ∗ 𝑥):
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𝜃𝑇𝑥 =

𝜃𝑇 0, : ∗ 𝑥

𝜃𝑇 1, : ∗ 𝑥
⋮

𝜃𝑇 𝑘, : ∗ 𝑥

Observation: h[i] 

only depends on 

the i-th row of 𝜃𝑇 .

𝜕ℎ[0]

𝜕𝜃
=

⋮ ⋮ ⋮ ⋮
𝑥 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝜕ℎ[1]

𝜕𝜃
=

⋮ ⋮ ⋮ ⋮
0 𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋮

Note: shape is [1, d*k], but for 

clarity I've reshaped to [d, k]

Recall: 𝜃 shape is [d, k], x shape 

is [d, 1], k is num classes.

...

Technically, at this point we are "done"! We can calculate each of the terms of this 

chain rule expression to get what we want. What could go wrong...?

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃

Shape: [1, dim(𝜃)] [1, k] [k, dim(𝜃)]

Issue: 
𝜕ℎ

𝜕𝜃
 is large! Ex: 

ImageNet-1k has 1000 

classes. Classification with 

>10K classes is quite common 

now. Can we do better?

Tip: X[i,:] means "the i-th row", eg numpy-like notation



Trick: exploit structure

Let's see if we can calculate 
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕𝜃
 without having to explicitly create 

𝜕ℎ

𝜕𝜃
:

30

Recall: 𝜃 shape is [d, k], x shape 

is [d, 1], k is num classes.

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
 =  ෍

𝑖=1

𝑘
𝜕ℓ𝑐𝑒

𝜕ℎ 𝑖
∗

𝜕ℎ 𝑖

𝜕𝜃
 =  

⋮ ⋮ ⋮ ⋮
𝑐0𝑥 0 ⋯ 0

⋮ ⋮ ⋮ ⋮
+

⋮ ⋮ ⋮ ⋮
0 𝑐1𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋮

+  …  
Where 𝑐𝑖 =

𝜕ℓ𝑐𝑒

𝜕ℎ 𝑖
= 𝑧 − 𝑒𝑦

= 𝑥 ∗
𝜕ℓ𝑐𝑒

𝜕ℎ
= 𝑥 ∗ 𝑧 − 𝑒𝑦

𝑇

=
⋮ ⋮ ⋮ ⋮

𝑐0𝑥 𝑐1𝑥 ⋯ 𝑐𝑘𝑥
⋮ ⋮ ⋮ ⋮

Shape check: [d, 1] * [1, k] -> [d, k] (which, 

when flattened row-wise) leads to [1, d*k]!

Tip: matrix-vector mult A*x can be 

expressed as scaling the i-th 

column of A by the i-th entry in x, 

and summing each scaled column:

𝐴 ∗ 𝑥 = ෍

𝑖=1

𝑘

𝐴 : , 𝑖 ∗ 𝑥[𝑖]

What we've done: we've taken 

advantage of the structure of 
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕ℎ
 and 

𝜕ℎ

𝜕𝜃
 to calculate 

𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕𝜃
 in an efficient manner.𝑥1

𝑥2

𝑥3

∗ 𝑦1 𝑦2 =

𝑥1𝑦1 𝑥1𝑦2

𝑥2𝑦1 𝑥2𝑦2

𝑥3𝑦1 𝑥3𝑦2

=
⋮ ⋮

𝑦1𝑥 𝑦2𝑥
⋮ ⋮

Observe that:
Much easier to 

calculate this!



Time, memory complexity
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𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃

Shape: [1, n∗ k] [1, k] [k, 𝑛 ∗ 𝑘]

Approach 1: "naive". Directly instantiate each term, and do matrix multiply.

Approach 2: Exploit structure to calculate efficiently.

Recall: matrix multiplication 

of [m,n] and [n,p] matrix is 

O(m*n*p)

k classes, n input 

dimensionality,

shape(𝜃)=[n, k]

Approach 2 is k 

times better than 

Approach 1 (in both 

time and space!)

Memory Time

Approach 1 𝑂(𝑘2𝑛 +  𝑘) 𝑂(𝑘2𝑛)

Approach 2 𝑂(𝑛𝑘) 𝑂(𝑘𝑛)

Reduction factor
𝑘 +

1

𝑛
≅ 𝑘

𝑘



Data point: ResNet-50, ImageNet-1k
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𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
Shape: [1, n∗ k] [1, k] [k, 𝑛 ∗ 𝑘]

Approach 1: "naive". Directly instantiate each term, and do matrix multiply.

Approach 2: Exploit structure to calculate efficiently.

k=1000 classes

n=1000 (fc6)

shape(𝜃)=[n, k]=[1000, 1000]

Approach 2 is 1000x 

times better than 

Approach 1 (in both 

time and space!)

Memory (fp32), batchsize=1 Time

Approach 1 𝑂 𝑘2𝑛 +  𝑘 = 4 GB 𝑂(𝑘2𝑛)

Approach 2 𝑂 𝑛𝑘 = 4 𝑀𝐵 𝑂(𝑘𝑛)

Reduction factor
𝑘 +

1

𝑛
≅ 𝑘 = 1000𝑥

𝑘 = 1000𝑥

ResNet-50: standard convnet (2015)

ImageNet-1k: standard image 

classification dataset.

train a resnet50 model on imagenet1k

To train a resnet50 model on imagenet1k in pytorch: ~306 MB GPU memory (batchsize=1), (~14 GB batchsize=96)

4 GB to store 
𝜕ℎ

𝜕𝜃
 is way too expensive! batchsize=96 would require 4*96=384 GB (!)

Top-of-the-line GPU cards (server) max out at 80 GB memory (Nvidia H100, ~$25k each as of Jan 2026)

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://www.image-net.org/about.php
https://www.image-net.org/about.php
https://www.image-net.org/about.php
https://discuss.pytorch.org/t/resnet-50-takes-10-13gb-to-run-with-batch-size-of-96/117402/2


Softmax gradient: recap

Let ℎ = 𝜃𝑇𝑥 (aka pred logits). The softmax loss gradient is:

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
= 𝑥 ∗ 𝑧 − 𝑒𝑦

𝑇

Same process works if we use “matrix batch” form of the loss

∇𝜃ℓ𝑐𝑒 𝑋𝜃, 𝑦 ∈ ℝ𝐵×𝑘 = 𝑋𝑇 𝑍 − 𝐼𝑦 , 𝑍 = softmax 𝑋𝜃

Where B is the number of samples in our batch.
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Note: shape should be [1,dim(𝜃)], but here it is 

[d, k] for clarity.

𝐼𝑦 is the [B,k] matrix of one-hot 

encodings stacked on top of 

each other.

X has shape [B, d].

𝜃 shape is [d, k]



Putting it all together

Despite a (somewhat long) derivation, it's neat how simple the final algorithm is

• Repeat until parameters / loss converges

1. Iterate over minibatches 𝑋 ∈ ℝ𝐵×𝑛, 𝑦 ∈ {1, … , 𝑘}𝐵 of training set

2. Update the parameters 𝜃 ≔ 𝜃 −
𝛼

𝐵
𝑋𝑇(𝑍 − 𝐼𝑦)

That is the entirety of the softmax regression algorithm

As you will see on the homework, this gets less than 8% error in classifying MNIST 

digits, runs in a couple seconds

Up next time: neural networks (a.k.a. fancier hypothesis classes)
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This is: 
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕𝜃
, aka ∇𝜃𝑙𝑜𝑠𝑠(ℎ, 𝑦) Step size
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