
Data 188: Introduction to Deep Learning

ML Refresher / Softmax Regression

Speaker: Eric Kim

Lecture 02 (Week 01)

2026-01-22, Spring 2026. UC Berkeley.

1

Acknowledgement: slides are based on CMU's Deep Learning Systems course

(10-414/714, Fall 2025). Thanks to: Prof. Zico Kolter, Prof. Tianqi Chen, Prof.

Tim Dettmers.

Revision02: 2026-01-25

https://dlsyscourse.org/

Announcements

• (Week 1) No discussion, no office hours

• (Week 2) Discussion and office hours starts!

• HW0 is released! Start early!

• See Ed post for more details: "HW0 released!"

• ~2 weeks to complete it

• Tip: after today's lecture, you should be able to do HW0

• Q5: we'll cover two-layer NN's in Lecture 03, but you should be able to

still do Q5 without it IMO

2

https://edstem.org/us/courses/91872/discussion/7535863

Enrollment, Waitlist

• If you're on the waitlist, and you're a DS senior that is graduating in SP26/SU26

and needs Data 188 to fulfill the MLDM requirement: please email ds-

advising@berkeley.edu to get into the course

• For more info, see Ed post: "Regarding Enrollment, Waitlists"

3

mailto:ds-advising@berkeley.edu
mailto:ds-advising@berkeley.edu
mailto:ds-advising@berkeley.edu
https://edstem.org/us/courses/91872/discussion/7542007

Reminder: important links

Course Website: Course syllabus, lecture slides, discussion notes, homework

assignments, staff bios, office hours times.

Edstem: where announcements are posted, and where you can ask questions.

Gradescope: Where you will submit homework assignments. Exam scores will also be

here.

Lecture Zoom link: Zoom link for lectures, TuTh 3:30pm-5pm.

Lecture Recordings: lecture recordings will be uploaded within 1-2 days after lecture.

• Tip: this is the bCourses "Media Gallery".

4

https://data-188-berkeley.github.io/sp26/syllabus/
https://edstem.org/us/courses/91872/discussion/7542007
https://www.gradescope.com/courses/1217889
https://berkeley.zoom.us/j/98594186696
https://bcourses.berkeley.edu/courses/1551684/external_tools/90481

Outline

Basics of machine learning

Example: softmax regresssion

5

Outline

Basics of machine learning

Example: softmax regresssion

6

Machine learning as data-driven programming

Suppose you want to write a program

that will classify handwritten drawing of

digits into their appropriate category:

0,1,…,9

You could, think hard about the nature of

digits, try to determine the logic of what

indicates what kind of digit, and write a

program to codify this logic

(Despite being a reasonable coder, I

don’t think I could do this very well)

7

MNIST Dataset

The (supervised) ML approach: collect a training set of images with known labels

and feed these into a machine learning algorithm, which will (if done well),

automatically produce a “program” that solves this task

Machine learning as data-driven programming

8

Training data

(, 4)

(, 5)

(, 8)

⋮

Machine

learning

algorithm

Model ℎ
such that

ℎ ≈ 4

ℎ ≈ 5

ℎ ≈ 8

⋮

Three ingredients of a machine learning algorithm

Every machine learning algorithm consists of three different elements:

1. The hypothesis class: the “program structure”, parameterized via a set of

parameters, that describes how we map inputs (e.g., images of digits) to

outputs (e.g., class labels, or probabilities of different class labels)

2. The loss function: a function that specifies how “well” a given hypothesis (i.e.,

a choice of parameters) performs on the task of interest

3. An optimization method: a procedure for determining a set of parameters

that (approximately) minimize the sum of losses over the training set

9

Outline

Basics of machine learning

Example: softmax regresssion

10

Multi-class classification setting

Let’s consider a k-class classification setting, where we have

• Training data: 𝑥 𝑖 ∈ ℝ𝑛, 𝑦 𝑖 ∈ {1, … , 𝑘} for 𝑖 = 1, … 𝑚

• 𝑛 = dimensionality of the input data

• 𝑘 = number of different classes / labels

• 𝑚 = number of points in the training set

Example: classification of 28x28 MNIST digits

• 𝑛 = 28 ⋅ 28 = 784 (28x28 pixel images)

• 𝑘 = 10 (digits 0-9)

• 𝑚 = 60,000

11

Linear hypothesis function

Our hypothesis function maps inputs 𝑥 ∈ ℝ𝑛 to 𝑘-dimensional vectors

ℎ: ℝ𝑛 → ℝ𝑘

where ℎ𝑖(𝑥) indicates some measure of “belief” in how much likely the label is to be

class 𝑖 (i.e., “most likely” prediction is coordinate 𝑖 with largest ℎ𝑖(𝑥)).

A linear hypothesis function uses a linear operator (i.e. matrix multiplication) for

this transformation

ℎ𝜃 𝑥 = 𝜃𝑇𝑥

for parameters 𝜃 ∈ ℝ𝑛×𝑘

12

Matrix batch notation

Often more convenient (and this is how you want to code things for efficiency) to

write the data and operations in matrix batch form

𝑋 ∈ ℝ𝑚×𝑛 =
− 𝑥 1 𝑇

−
⋮

− 𝑥 𝑚 𝑇
−

, 𝑦 ∈ {1, … , 𝑘}𝑚 =
𝑦 1

⋮
𝑦 𝑚

Then the linear hypothesis applied to this batch can be written as

ℎ𝜃 𝑋 =
− ℎ𝜃 𝑥 1 𝑇

−

⋮
−ℎ𝜃 𝑥𝑚 𝑇 −

=
− 𝑥 1 𝑇

𝜃 −
⋮

− 𝑥 𝑚 𝑇
𝜃 −

= 𝑋𝜃

13

m: batchsize

n: input dim

[m, n] [n, k]

Loss function #1: classification error

A simple loss function to use in classification is the classification error, i.e., whether
the classifier makes a mistake or not:

ℓ𝑒𝑟𝑟 ℎ 𝑥 , 𝑦 = ቊ
0 if argmax𝑖 ℎ𝑖 𝑥 = 𝑦
1 otherwise

We typically use this loss function to assess the quality of classifiers

Unfortunately, the error is a bad loss function to use for optimization, i.e., selecting
the best parameters, because it is not differentiable, and its gradient has little
information

Also known as "0/1 loss".

14

0-1 loss gradient
Suppose we have 2 classes (binary classification). Let 𝑝𝑐𝑙𝑎𝑠𝑠1 denote the probability of class1. Let's

view the plots of both the loss and its derivative:

ℓ𝑒𝑟𝑟 𝑝𝑐𝑙𝑎𝑠𝑠1, 𝑦 = 1 = ቊ
0 if 𝑝𝑐𝑙𝑎𝑠𝑠1 > 0.5
1 otherwise

15

Problem: gradient is 0

everywhere, and

undefined at p_class1=0.5

(shown as infinity for

visualization, though

technically is undefined).

Gradient descent won't

work!

Loss(p_class1, y=1) Gradient of Loss

Loss function #2: softmax (aka cross-entropy) loss

Let’s convert the hypothesis function to a “probability” by exponentiating and

normalizing its entries (to make them all positive and sum to one)

𝑧𝑖 = 𝑝 label = 𝑖 =
exp ℎ𝑖 𝑥

σ𝑗=1
𝑘 exp ℎ𝑗 𝑥

⟺ 𝑧 ≡ softmax ℎ 𝑥

Then let’s define a loss to be the (negative) log probability of the true class: this is

called softmax or cross-entropy loss

ℓ𝑐𝑒 ℎ 𝑥 , 𝑦 = − log 𝑝 label = 𝑦 = − ℎ𝑦 𝑥 + log ෍

𝑗=1

𝑘

exp ℎ𝑗 𝑥

16

Terminology: h(x) is called the "logits". They are values output by your

model that get normalized by softmax() to probabilities.

Aside: logits

CrossEntropyLoss

In this equation, the h(x) are known as class logits:

𝑝 label = 𝑖 =
exp ℎ𝑖 𝑥

σ𝑗=1
𝑘 exp ℎ𝑗 𝑥

⟺ 𝑧 ≡ softmax ℎ 𝑥

Unlike probabilities (range [0,1]), logits are unbounded (range [-inf, +inf]).

Typically, we implement classification models by passing predicted logits (rather

than probabilities) to loss layers (like pytorch's CrossEntropyLoss).

17

Ex: for three classes, suppose our logits are: [1, -2, 3]
>>> logits = np.array([[1, -2, 3]])
>>> probs = softmax_normalize(logits)
>>> probs
array([[0.11849965, 0.00589975, 0.8756006]])
>>> probs.sum() # always sums to 1
np.float64(1.0)

https://docs.pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Binary Cross Entropy (BCE)

Special case: for binary classification (positive/negative class), can simplify

expressions. Let h(x) be the predicted logits for the positive class:

𝑝 label = 𝑝𝑜𝑠 =
1

1 + 𝑒−ℎ(𝑥)

Then, binary cross-entropy loss is:

ℓ𝑏𝑐𝑒 ℎ 𝑥 , 𝑦 = 𝑝𝑜𝑠 = − log 𝑝 label = 𝑝𝑜𝑠 = − log(
1

1 + 𝑒−ℎ(𝑥)
)

18

Aka "sigmoid" or

"logistic" function

BCE loss gradient
Let's view the BCE loss and its gradient:

19
Loss(p_class1, y=1) Gradient of Loss

ℓ𝑏𝑐𝑒 ℎ 𝑥 , 𝑦 = −log(
1

1 + 𝑒−ℎ(𝑥)
)

𝜕

𝜕ℎ(𝑥)
ℓ𝑏𝑐𝑒 ℎ(𝑥), 𝑦 = 𝑝𝑜𝑠 = −

1

𝑒ℎ(𝑥) + 1

Gradient is

smooth,

continuous, and

provides a "healthy"

training signal!

Gradient descent

will work well here.

Note: dots indicate logit vals where

prob=5%, 50%, and 95% confidence.

Observation:

gradient is large for

confidently wrong

preds, and small for

correct preds. Good

property!

The softmax regression optimization problem

The third ingredient of a machine learning algorithm is a method for solving the

associated optimization problem, i.e., the problem of minimizing the average loss

on the training set

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

For softmax regression (i.e., linear hypothesis class and softmax loss):

minimize
𝜃

1

𝑚
෍

𝑖=1

𝑚

ℓ𝑐𝑒 𝜃𝑇𝑥 𝑖 , 𝑦 𝑖

So how do we find 𝜃 that solves this optimization problem?
20

Means: find the model

parameters 𝜃 that

minimizes the training loss

model

prediction

ground truth

label

Definition: Jacobians

For a multi-input function, multi-output function 𝑓: ℝ𝑛 → ℝ𝑘, the Jacobian of f is defined as the collection of all partial derivatives:

∇𝑓(𝑥) ∈ ℝ𝑘×𝑛 =

𝜕𝑓 𝑥 1

𝜕𝑥1

𝜕𝑓 𝑥 1

𝜕𝑥2
⋯

𝜕𝑓 𝑥 1

𝜕𝑥𝑛

𝜕𝑓 𝑥 2

𝜕𝑥1
⋯ ⋯ ⋯

⋮ ⋮ ⋱ ⋮
𝜕𝑓 𝑥 𝑘

𝜕𝑥1
⋮ ⋯

𝜕𝑓 𝑥 𝑘

𝜕𝑥𝑛

Ex: if 𝑓 𝑥1, 𝑥2 = 𝑥1 + 3𝑥2, 2𝑥1𝑥2, 42 , 𝑓: ℝ2 → ℝ3, then its Jacobian would be:

∇𝑓 𝑥 ∈ ℝ3×2 =

𝜕 𝑥1 + 3𝑥2

𝜕𝑥1

𝜕 𝑥1 + 3𝑥2

𝜕𝑥2

𝜕 2𝑥1𝑥2

𝜕𝑥1

𝜕 2𝑥1𝑥2

𝜕𝑥2

𝜕 42

𝜕𝑥1

𝜕 42

𝜕𝑥2

=
1 3

2𝑥2 2𝑥1

0 0

21

Note: this uses the "numerator"

convention for the Jacobian, eg [k, n].

The "denominator" convention instead

uses [n, k].

Different places can use different

conventions, so take care!

In this course, we'll use the "numerator"

convention.

Intuition: how much does

f(x) change with respect to

each of its inputs?

In ML: how much does my

loss f(x) change with

respect to each of its

model parameters?

https://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions

Tip: Jacobian "proper" shapes

Warning: in this class, we will often work with functions that accept matrices as
input/output. When we define the Jacobian of these matrix-valued functions, the "true"
shape of the Jacobian is still 2D, not 3D/4D.

Example: suppose f takes an [n x k] matrix, and outputs a scalar. Its Jacobian ∇𝑓(𝑥) has
shape [n*k, 1], where the first dimension is "flattened" (eg row-wise).

Notably, the shape of ∇𝑓 𝑥 is NOT [n, k].

However, for convenience, people sometimes represent ∇𝑓 𝑥 as a matrix (shape=[n, k])
rather than as a tall vector (shape=[n*k, 1]). This is fine, as long as you recognize when
this happens!

This will be important later, where it's important to keep track of matrix/Jacobian shapes.

22

(Apologies if this doesn't make much sense right now, but it will in a few days...)

Optimization: gradient descent (1/2)

For a matrix-input, scalar output function 𝑓: ℝ𝑛×𝑘 → ℝ, the gradient is defined as the
matrix of partial derivatives

∇𝜃𝑓 𝜃 ∈ ℝ𝑛×𝑘 =

𝜕𝑓 𝜃

𝜕𝜃11
⋯

𝜕𝑓 𝜃

𝜕𝜃1𝑘

⋮ ⋱ ⋮
𝜕𝑓 𝜃

𝜕𝜃𝑛1
⋯

𝜕𝑓 𝜃

𝜕𝜃𝑛𝑘

Gradient points in the direction that most increases 𝑓 (locally)

In ML, 𝜃 is our model parameters, and f is our loss function. Thus, ∇𝜃𝑓 𝜃 tells us: if I want
to minimize the loss f, in which direction should I adjust my model parameters 𝜃?

23

Note: the shape is actually

[n*k, 1], but visualized here

as [n, k] for visual clarity

Optimization: gradient descent (2/2)

To minimize a function, the gradient descent algorithm proceeds by iteratively

taking steps in the direction of the negative gradient

𝜃 ≔ 𝜃 − 𝛼∇𝜃𝑓 𝜃

where 𝛼 > 0 is a step size or learning rate

24
𝛼 = 0.2 𝛼 = 0.42𝛼 = 0.05

𝜃1𝜃1𝜃1

𝜃
2

𝜃
2

𝜃
2

The art of picking a

good learning rate:

Too small: overly long

training jobs.

Too large: unstable

training, overshooting.

In practice: set

empirically (a

hyperparameter), eg

"try a bunch of step

sizes, choose the one

that performs best".

"Stochastic" gradient descent (aka mini-batches)

If our objective (as is the case in machine learning) is the sum of individual losses,

we typically don’t want to compute the gradient using all examples to make a single

update to the parameters

Instead, take many gradient steps each based upon a minibatch (small partition of

the data), to make many parameter updates using a single “pass” over data

Repeat:
 Sample a minibatch of data 𝑋 ∈ ℝ𝐵×𝑛, 𝑦 ∈ {1, … , 𝑘}𝐵

 Update parameters 𝜃 ≔ 𝜃 −
𝛼

𝐵
෍

𝑖=1

𝐵

∇𝜃ℓ ℎ𝜃 𝑥 𝑖 , 𝑦 𝑖

25

Jargon: a pass

over the entire

dataset is called

an "epoch"

The gradient of the softmax objective

So, how do we compute the gradient for the softmax objective?

∇𝜃ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 =?

One way: "brute force". Write out ℓ𝑐𝑒 𝜃𝑇𝑥, 𝑦 , and directly (by hand!) differentiate it

with respect to model parameters θ. Aka "plug and chug". Labor intensive!

A more convenient way: utilize the (multivariate) chain rule to simplify calculations.

26

Multivariate chain rule

Suppose we have 𝑧 = 𝑓(𝑦), 𝑦 = 𝑔(𝑥). Then:

𝜕𝑧

𝜕𝑥
 =

𝜕𝑧

𝜕𝑦
 ∗

𝜕𝑦

𝜕𝑥

Intuition: x changes z indirectly via intermediate function g(x). To find out how changes in x

modify z (
𝜕𝑧

𝜕𝑥
): first find out how changes in y affect z (

𝜕𝑧

𝜕𝑦
), then scale it by how changes in x

affect y (
𝜕𝑦

𝜕𝑥
).

Decomposes
𝜕𝑧

𝜕𝑥
 in terms of two (hopefully easier) derivatives

𝜕𝑧

𝜕𝑦
,

𝜕𝑦

𝜕𝑥
.

27

Spoiler alert: this will

be very useful for deep

learning ("backprop!")

[z.shape, x.shape] [z.shape, y.shape] [y.shape, x.shape]Shapes:

Note: unlike scalar chain rule,

these quantities are matrices,

and this is matrix multiplication.

See how the shapes are

compatible with each other!

Important to keep track of

shapes.

Softmax gradient: chain rule (first term)

Let ℎ = 𝜃𝑇𝑥 (aka pred logits). Using the chain rule, the softmax loss gradient is:

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃

Let’s start by computing the first term:

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ𝑖
=

𝜕

𝜕ℎ𝑖
−ℎ𝑦 + log ෍

𝑗=1

𝑘

exp ℎ𝑗

 = −1{𝑖 = 𝑦} +
exp ℎ𝑖

σ𝑗=1
𝑘 exp ℎ𝑗

In vector form:
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕ℎ
= 𝑧 − 𝑒𝑦

𝑇
, where 𝑧 = softmax(ℎ)

28

𝑒𝑦 is the one-hot encoding of y,

eg vector of all 0's except a 1 at

index for ground-truth class y.

Means: 1 if i=y, 0 otherwise. Also written as: 𝜕𝑖𝑦

[1, dim(theta)] [1, k] [k, dim(theta)]

[1, 1]

[1, k]

Softmax gradient: chain rule (second term)

To compute the second term
𝜕ℎ

𝜕𝜃
 (where ℎ = 𝜃𝑇 ∗ 𝑥):

29

𝜃𝑇𝑥 =

𝜃𝑇 0, : ∗ 𝑥

𝜃𝑇 1, : ∗ 𝑥
⋮

𝜃𝑇 𝑘, : ∗ 𝑥

Observation: h[i]

only depends on

the i-th row of 𝜃𝑇 .

𝜕ℎ[0]

𝜕𝜃
=

⋮ ⋮ ⋮ ⋮
𝑥 0 ⋯ 0
⋮ ⋮ ⋮ ⋮

𝜕ℎ[1]

𝜕𝜃
=

⋮ ⋮ ⋮ ⋮
0 𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋮

Note: shape is [1, d*k], but for

clarity I've reshaped to [d, k]

Recall: 𝜃 shape is [d, k], x shape

is [d, 1], k is num classes.

...

Technically, at this point we are "done"! We can calculate each of the terms of this

chain rule expression to get what we want. What could go wrong...?

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃

Shape: [1, dim(𝜃)] [1, k] [k, dim(𝜃)]

Issue:
𝜕ℎ

𝜕𝜃
 is large! Ex:

ImageNet-1k has 1000

classes. Classification with

>10K classes is quite common

now. Can we do better?

Tip: X[i,:] means "the i-th row", eg numpy-like notation

Trick: exploit structure

Let's see if we can calculate
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕𝜃
 without having to explicitly create

𝜕ℎ

𝜕𝜃
:

30

Recall: 𝜃 shape is [d, k], x shape

is [d, 1], k is num classes.

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
 = ෍

𝑖=1

𝑘
𝜕ℓ𝑐𝑒

𝜕ℎ 𝑖
∗

𝜕ℎ 𝑖

𝜕𝜃
 =

⋮ ⋮ ⋮ ⋮
𝑐0𝑥 0 ⋯ 0

⋮ ⋮ ⋮ ⋮
+

⋮ ⋮ ⋮ ⋮
0 𝑐1𝑥 ⋯ 0
⋮ ⋮ ⋮ ⋮

+ …
Where 𝑐𝑖 =

𝜕ℓ𝑐𝑒

𝜕ℎ 𝑖
= 𝑧 − 𝑒𝑦

= 𝑥 ∗
𝜕ℓ𝑐𝑒

𝜕ℎ
= 𝑥 ∗ 𝑧 − 𝑒𝑦

𝑇

=
⋮ ⋮ ⋮ ⋮

𝑐0𝑥 𝑐1𝑥 ⋯ 𝑐𝑘𝑥
⋮ ⋮ ⋮ ⋮

Shape check: [d, 1] * [1, k] -> [d, k] (which,

when flattened row-wise) leads to [1, d*k]!

Tip: matrix-vector mult A*x can be

expressed as scaling the i-th

column of A by the i-th entry in x,

and summing each scaled column:

𝐴 ∗ 𝑥 = ෍

𝑖=1

𝑘

𝐴 : , 𝑖 ∗ 𝑥[𝑖]

What we've done: we've taken

advantage of the structure of
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕ℎ
 and

𝜕ℎ

𝜕𝜃
 to calculate

𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕𝜃
 in an efficient manner.𝑥1

𝑥2

𝑥3

∗ 𝑦1 𝑦2 =

𝑥1𝑦1 𝑥1𝑦2

𝑥2𝑦1 𝑥2𝑦2

𝑥3𝑦1 𝑥3𝑦2

=
⋮ ⋮

𝑦1𝑥 𝑦2𝑥
⋮ ⋮

Observe that:
Much easier to

calculate this!

Time, memory complexity

31

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃

Shape: [1, n∗ k] [1, k] [k, 𝑛 ∗ 𝑘]

Approach 1: "naive". Directly instantiate each term, and do matrix multiply.

Approach 2: Exploit structure to calculate efficiently.

Recall: matrix multiplication

of [m,n] and [n,p] matrix is

O(m*n*p)

k classes, n input

dimensionality,

shape(𝜃)=[n, k]

Approach 2 is k

times better than

Approach 1 (in both

time and space!)

Memory Time

Approach 1 𝑂(𝑘2𝑛 + 𝑘) 𝑂(𝑘2𝑛)

Approach 2 𝑂(𝑛𝑘) 𝑂(𝑘𝑛)

Reduction factor
𝑘 +

1

𝑛
≅ 𝑘

𝑘

Data point: ResNet-50, ImageNet-1k

32

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
Shape: [1, n∗ k] [1, k] [k, 𝑛 ∗ 𝑘]

Approach 1: "naive". Directly instantiate each term, and do matrix multiply.

Approach 2: Exploit structure to calculate efficiently.

k=1000 classes

n=1000 (fc6)

shape(𝜃)=[n, k]=[1000, 1000]

Approach 2 is 1000x

times better than

Approach 1 (in both

time and space!)

Memory (fp32), batchsize=1 Time

Approach 1 𝑂 𝑘2𝑛 + 𝑘 = 4 GB 𝑂(𝑘2𝑛)

Approach 2 𝑂 𝑛𝑘 = 4 𝑀𝐵 𝑂(𝑘𝑛)

Reduction factor
𝑘 +

1

𝑛
≅ 𝑘 = 1000𝑥

𝑘 = 1000𝑥

ResNet-50: standard convnet (2015)

ImageNet-1k: standard image

classification dataset.

train a resnet50 model on imagenet1k

To train a resnet50 model on imagenet1k in pytorch: ~306 MB GPU memory (batchsize=1), (~14 GB batchsize=96)

4 GB to store
𝜕ℎ

𝜕𝜃
 is way too expensive! batchsize=96 would require 4*96=384 GB (!)

Top-of-the-line GPU cards (server) max out at 80 GB memory (Nvidia H100, ~$25k each as of Jan 2026)

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://www.image-net.org/about.php
https://www.image-net.org/about.php
https://www.image-net.org/about.php
https://discuss.pytorch.org/t/resnet-50-takes-10-13gb-to-run-with-batch-size-of-96/117402/2

Softmax gradient: recap

Let ℎ = 𝜃𝑇𝑥 (aka pred logits). The softmax loss gradient is:

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕𝜃
=

𝜕ℓ𝑐𝑒 ℎ, 𝑦

𝜕ℎ
 ∗

𝜕ℎ

𝜕𝜃
= 𝑥 ∗ 𝑧 − 𝑒𝑦

𝑇

Same process works if we use “matrix batch” form of the loss

∇𝜃ℓ𝑐𝑒 𝑋𝜃, 𝑦 ∈ ℝ𝐵×𝑘 = 𝑋𝑇 𝑍 − 𝐼𝑦 , 𝑍 = softmax 𝑋𝜃

Where B is the number of samples in our batch.

33

Note: shape should be [1,dim(𝜃)], but here it is

[d, k] for clarity.

𝐼𝑦 is the [B,k] matrix of one-hot

encodings stacked on top of

each other.

X has shape [B, d].

𝜃 shape is [d, k]

Putting it all together

Despite a (somewhat long) derivation, it's neat how simple the final algorithm is

• Repeat until parameters / loss converges

1. Iterate over minibatches 𝑋 ∈ ℝ𝐵×𝑛, 𝑦 ∈ {1, … , 𝑘}𝐵 of training set

2. Update the parameters 𝜃 ≔ 𝜃 −
𝛼

𝐵
𝑋𝑇(𝑍 − 𝐼𝑦)

That is the entirety of the softmax regression algorithm

As you will see on the homework, this gets less than 8% error in classifying MNIST

digits, runs in a couple seconds

Up next time: neural networks (a.k.a. fancier hypothesis classes)

34

This is:
𝜕ℓ𝑐𝑒 ℎ,𝑦

𝜕𝜃
, aka ∇𝜃𝑙𝑜𝑠𝑠(ℎ, 𝑦) Step size

	Intro slides
	Slide 1: Data 188: Introduction to Deep Learning ML Refresher / Softmax Regression
	Slide 2: Announcements
	Slide 3: Enrollment, Waitlist
	Slide 4: Reminder: important links
	Slide 5: Outline

	Basics of machine learning
	Slide 6: Outline
	Slide 7: Machine learning as data-driven programming
	Slide 8: Machine learning as data-driven programming
	Slide 9: Three ingredients of a machine learning algorithm

	Example: softmax regresssion
	Slide 10: Outline
	Slide 11: Multi-class classification setting
	Slide 12: Linear hypothesis function
	Slide 13: Matrix batch notation
	Slide 14: Loss function #1: classification error
	Slide 15: 0-1 loss gradient
	Slide 16: Loss function #2: softmax (aka cross-entropy) loss
	Slide 17: Aside: logits
	Slide 18: Binary Cross Entropy (BCE)
	Slide 19: BCE loss gradient
	Slide 20: The softmax regression optimization problem
	Slide 21: Definition: Jacobians
	Slide 22: Tip: Jacobian "proper" shapes
	Slide 23: Optimization: gradient descent (1/2)
	Slide 24: Optimization: gradient descent (2/2)
	Slide 25: "Stochastic" gradient descent (aka mini-batches)
	Slide 26: The gradient of the softmax objective
	Slide 27: Multivariate chain rule
	Slide 28: Softmax gradient: chain rule (first term)
	Slide 29: Softmax gradient: chain rule (second term)
	Slide 30: Trick: exploit structure
	Slide 31: Time, memory complexity
	Slide 32: Data point: ResNet-50, ImageNet-1k
	Slide 33: Softmax gradient: recap
	Slide 34: Putting it all together

