Data 188: Introduction to Deep Learning

ML Refresher / Softmax Regression

Speaker: Eric Kim
Lecture 02 (Week 01)
2026-01-22, Spring 2026. UC Berkeley.

Acknowledgement: slides are based on CMU's Deep Learning Systems course Revision02: 2026-01-25
(10-414/714, Fall 2025). Thanks to: Prof. Zico Kolter, Prof. Tiangi Chen, Prof.
Tim Dettmers.

https://dlsyscourse.org/

Announcements

* (Week 1) No discussion, no office hours
« (Week 2) Discussion and office hours starts!

« HWO is released! Start early!
» See Ed post for more details: "HWO released!”
« ~2 weeks to complete it
 Tip: after today's lecture, you should be able to do HWO

« Q5: we'll cover two-layer NN's in Lecture 03, but you should be able to
still do Q5 without it IMO

https://edstem.org/us/courses/91872/discussion/7535863

Enrollment, Waitlist

« |If you're on the waitlist, and you're a DS senior that is graduating in SP26/SU26
and needs Data 188 to fulfill the MLDM requirement: please email ds-
advising@berkeley.edu to get into the course

« For more info, see Ed post: "Regarding Enrollment, Waitlists"

mailto:ds-advising@berkeley.edu
mailto:ds-advising@berkeley.edu
mailto:ds-advising@berkeley.edu
https://edstem.org/us/courses/91872/discussion/7542007

Reminder: important links

Course Website: Course syllabus, lecture slides, discussion notes, homework
assignments, staff bios, office hours times.

Edstem: where announcements are posted, and where you can ask questions.

Gradescope: Where you will submit homework assignments. Exam scores will also be
here.

Lecture Zoom link: Zoom link for lectures, TuTh 3:30pm-5pm.

Lecture Recordings: lecture recordings will be uploaded within 1-2 days after lecture.
 Tip: this is the bCourses "Media Gallery".

https://data-188-berkeley.github.io/sp26/syllabus/
https://edstem.org/us/courses/91872/discussion/7542007
https://www.gradescope.com/courses/1217889
https://berkeley.zoom.us/j/98594186696
https://bcourses.berkeley.edu/courses/1551684/external_tools/90481

Outline

Basics of machine learning

Example: softmax regresssion

Outline

Basics of machine learning

Machine learning as data-driven programming

Suppose you want to write a program

. . . . S0H /932 \V3 V#3536)
thalt W.|II Class[fy handwrlltten drawmg_of 22865MA7/429327
digits into their appropriate category: 2P 605603618793
0.1,....9 98533302+ 79094/

Q¥6OYs 610017) 03
You could, think hard aboutthe natureof |82 /) 7803 6783590
digits, try to determine the logicofwhat (62 4 6 0 7 8 3/ 71 7\
indicates what kind of digit, and writea |f 6302943 | /049200
program to codify this logic 2027 1864163457\

3273840274285 5623
(Despite being a reasonable coder, | MNIST Dataset

don't think | could do this very well)

Machine learning as data-driven programming

The (supervised) ML approach: collect a training set of images with known labels
and feed these into a machine learning algorithm, which will (if done well),
automatically produce a “program” that solves this task

Training data Model h
such that
(4.9 Machi
achine (L) ~ 4
(5.5 > learning >
algorithm h(™) = 5
(¥ M) ~ 8

Three ingredients of a machine learning algorithm

Every machine learning algorithm consists of three different elements:

1. The hypothesis class: the “program structure”, parameterized via a set of
parameters, that describes how we map inputs (e.g., images of digits) to
outputs (e.q., class labels, or probabilities of different class labels)

2. The loss function: a function that specifies how “well” a given hypothesis (i.e.,
a choice of parameters) performs on the task of interest

3. An optimization method: a procedure for determining a set of parameters
that (approximately) minimize the sum of losses over the training set

Example: softmax regresssion

Outline

10

Multi-class classification setting

Let’'s consider a k-class classification setting, where we have
e Training data: x®¥ e R*, yW e {1,...,k}fori =1, ..m

« n = dimensionality of the input data
* k = number of different classes / labels
* m = number of points in the training set

Example: classification of 28x28 MNIST digits
« n= 2828 =784 (28x28 pixel images)
« k =10 (digits 0-9)
« m = 60,000

Wy~aa v\

COAPN NRRY DO

wbhoc~Noy eoxl

AN OSSN e N

R MVON T WD
U 0O Y W XN

N A Y~~~ Q —~

TR —NP=Jd ol

A N~JO~L e
G Wl onSedg—1N

ONRDN N O %< &

e N—Q—w-2WW
LYWW ONOSsLwN D
W/~ uoNwN —

11

Linear hypothesis function

Our hypothesis function maps inputs x € R" to k-dimensional vectors

h: R" - R¥
where h;(x) indicates some measure of “belief” in how much likely the label is to be
class i (i.e., “most likely” prediction is coordinate i with largest h;(x)).

A linear hypothesis function uses a linear operator (i.e. matrix multiplication) for
this transformation

ho(x) = 0"Tx
for parameters 6 € R™*¥

12

Matrix batch notation

Often more convenient (and this is how you want to code things for efficiency) to
write the data and operations in matrix batch form

_ T - _ _
m: batchsize T x(l) _ y(l)
n: input dim X € RMXn — , y € {1, ’k}m — :

! _

y]

Then the linear hypothesis applied to this batch can be written as

— hy (x(l))T] [-x®Tg -]
: : 0

|

hg(X) =

: : =X
| —he(x™)T =1 |- x(m)TH — /

[m, n] [n, k]

13

Loss function #1: classification error

A simple loss function to use in classification is the classification error, i.e., whether
the classifier makes a mistake or not:

0 if argmax; h;(x) =
R

We typically use this loss function to assess the quality of classifiers

Unfortunately, the error is a bad loss function to use for optimization, i.e., selecting

the best parameters, because it is not differentiable, and its gradient has little
information

Also known as "0/1 loss".

14

0-1 loss gradient

Suppose we have 2 classes (binary classification). Let p.4551 denote the probability of class1. Let's

view the plots of both the loss and its derivative:
)

0 ifpclassl > (0.5

=1) =«
Corr Pciass1r Y) 1 otherwise

\

Problem: gradient is 0
everywhere, and
undefined at p_class1=0.5
(shown as infinity for
visualization, though
- s technically is undefined).
o s Gradient descent won't

e work!

21|+ %

)/+\s

05

a2 R o2 5 a6 o7 08 (5] 11 N o3 04 08 oF 08 09 « 1[c')b ’
[O B S e O

Loss(p_class1, y=1) Gradient of Loss 15

Loss function #2: softmax (aka cross-entropy) loss

Let’'s convert the hypothesis function to a “probability” by exponentiating and
normalizing its entries (to make them all positive and sum to one)

exp(hi (x))
?=1 exp (hj (x))

z; = p(label =1i) = & z = softmax(h(x))

Then let’'s define a loss to be the (negative) log probability of the true class: this is
called softmax or cross-entropy 10ss

k
tce(h(x),y) = —logp(label = y) = — h,(x) + logz exp (hj(x))
j=1

Terminology: h(x) is called the "logits". They are values output by your
model that get normalized by softmax() to probabilities.

16

Aside: logits
In this equation, the h(x) are known as class logits:
exp(hi(x))

Z?=1 exp (hj (x))

p(label = i) = & 7z = softmax(h(x))

Unlike probabilities (range [0,1]), logits are unbounded (range [-Inf, +inf]).

Typically, we implement classification models by passing predicted logits (rather
than probabilities) to loss layers (like pytorch's CrossEntropylLoss).

Ex: for three classes, suppose our logits are: [1, -2, 3]
>>> logits = np.array([[1, -2, 3]])

>>> probs = softmax_normalize(logits)

>>> probs

array([[0.11849965, ©.00589975, 0.8756006]])

>>> probs.sum() # always sums to 1

np.float64(1.0)

17

https://docs.pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Binary Cross Entropy (BCE)

Special case: for binary classification (positive/negative class), can simplify
expressions. Let h(x) be the predicted logits for the positive class:

1 Aka "sigmoid" or
1 + e—h®) "logistic” function

p(label = pos) =

Then, binary cross-entropy loss Is:

1
thce(h(x),y = pos) = —logp(label = pos) = —log(;——=)

18

BCE loss gradient

Let's view the BCE loss and its gradient: Gradient is
1 3] smooth,
= — — — - continuous, and
gbce(h(x);:)’) 108(1 + e_h(x)) ah(x) fbce(h(x)'y o pOS) B eh(®) + 1

provides a "healthy"
training signal!
Gradient descent
will work well here.

Observation:
gradient is large for
confidently wrong
preds, and small for
correct preds. Good
property!

Note: dots indicate logit vals where
. b=5%, 50%, and 95% confid .
Loss(p_class1, y=1) Gradient of Loss e o CO:; o

The softmax regression optimization problem

The third ingredient of a machine learning algorithm is a method for solving the

associated optimization problem, i.e., the problem of minimizing the average loss
on the training set

Means: find the model

mlnlmlze — z f(he (x(l)) y(l)) - parameters 6 that

minimizes the training loss

model ground truth
prediction label

For softmax regression (i.e., linear hypothesis class and softmax loss):
m
1 . .
minimize EZ 2. (0TxM,y W)

So how do we find 8 that solves this optimization problem?

20

Definition: Jacobians

For a multi-input function, multi-output function f: R® - R¥, the Jacobian of f is defined as the collection of all partial derivatives:

Vf(x) € RFM = | "5,

Ex:if f(xq,x) = [x; + 3%y, 2x1%,, 42],f:R? > R3,

Vf(x) € R3*2 =

[0f (x), 9f (%), af (x)4]
d0xq dx, 0x,
af(x)z
of (x) af (x)x
| 0x4 dx, |
then its Jacobian would be:
0(xy + 3x,) 0(x; + 3x,)]
d0xq dx,
0(2x1x7) 0(2x1x7) 1 3
_— — | =|2x, 2x;
d0x4 dx, 0 0
0(42) 0(42)
d0x4 dx,

|

Note: this uses the "numerator”
convention for the Jacobian, eg [k, n].
The "denominator" convention instead

uses [n, k].
Different places can use different
conventions, so take care!
In this course, we'll use the "numerator”
convention.

Intuition: how much does
f(x) change with respect to
each of its inputs?

In ML: how much does my
loss f(x) change with
respect to each of its

model parameters?

21

https://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions

Tip: Jacobian "proper" shapes

Warning: in this class, we will often work with functions that accept matrices as
input/output. When we define the Jacobian of these matrix-valued functions, the "true"
shape of the Jacobian is still 2D, not 3D/4D.

Example: suppose f takes an [n x k] matrix, and outputs a scalar. Its Jacobian Vf (x) has
shape [n*k, 1], where the first dimension is "flattened" (eg row-wise).

Notably, the shape of Vf(x) is NOT [n, k].

However, for convenience, people sometimes represent Vf (x) as a matrix (shape=[n, k])
rather than as a tall vector (shape=[n*k, 1]). This is fine, as long as you recognize when
this happens!

This will be important later, where it's important to keep track of matrix/Jacobian shapes.

(Apologies if this doesn't make much sense right now, but it will in a few days...)

22

Optimization: gradient descent (1/2)

For a matrix-input, scalar output function f: R™* — R, the gradient is defined as the
matrix of partial derivatives

9f(0) of(6) A
Vof(@) eRPF = =
JIONNNEIIO] B S 9,00
e, 186, 00 9
as [n, k] for visual clarity >

02
Gradient points in the direction that most increases f (locally)

In ML, 8 is our model parameters, and f is our loss function. Thus, Vg f(8) tells us: if | want
to minimize the loss f, in which direction should | adjust my model parameters 6?

23

Optimization: gradient descent (2/2)

To minimize a function, the gradient descent algorithm proceeds by iteratively
taking steps in the direction of the negative gradient

0:=0—aVyf(0)
where a > 0 Is a step size or learning rate The art of picking a

good learning rate:

3.0 3.0 ' \ 3.0 Too small: overly long
25 25 55 training jobs.
Too large: unstable
2.0 2.0 : 2.0 training, overshooting.
N N N
1.5 D 1.5 - D 1.5 .
10 In practice: set
. 1.0 1 1.0 empirically (a
0.5 0.5 4 0.5 hyperparameter), eg
0.0 L . 0.0 T _ 0.0 T i ‘try a t;]unch ?;Step
0.0051.01.52.02.53.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.00.51.01.52.02.53.0 °Z%C5 CNO0SEINeOne
that performs best".
01 01 01
a = 0.05 a=0.2 a =042

24

"Stochastic” gradient descent (aka mini-batches)

If our objective (as is the case in machine learning) is the sum of individual losses,
we typically don't want to compute the gradient using all examples to make a single
update to the parameters

Instead, take many gradient steps each based upon a minibatch (small partition of
the data), to make many parameter updates using a single “pass” over data

Repeat: ,
. . argon: a pass
Sample a minibatch of data X € R*",y € {1, ..., k}® over the entire
dataset is called
an "epoch"

B
a . .
Update parameters 6 := 6 — EE Vot(hg(x®),y®)
i=1

25

The gradient of the softmax objective

S0, how do we compute the gradient for the softmax objective?
Votlce (HTxr y) =7?

One way: "brute force". Write out £.,(8"x,y), and directly (by hand!) differentiate it
with respect to model parameters 6. Aka "plug and chug". Labor intensive!

A more convenient way: utilize the (multivariate) chain rule to simplify calculations.

26

Multivariate chain rule

Suppose we have z = f(y),y = g(x). Then:

Note: unlike scalar chain rule,

these quantities are matrices,
0z 0z dy and this is matrix multiplication.

~ ~ ~ See how the shapes are
0x ay 0x compatible with each other!
Important to keep track of
/ ‘ \ shapes.
Shapes: [z.shape, x.shape] [z.shape, y.shape] [y.shape, x.shape]

Intuition: x Changes z indirectly via intermediate function g(x). To find out how changes in x

modify z () first find out how changes in y affect z (Zy) then scale it by how changes in x

affect y (E)'

Spoiler alert: this will
7 9 be very useful for deep
9y _ learning ("backprop!")
d

Decomposes 92 in terms of two (hopefully easier) derivatives %

ox

27

Softmax gradient: chain rule (first term)

Let h = 87 x (aka pred logits). Using the chain rule, the softmax loss gradient is:
0¢ce(h,y) 0fco(h,y) _oh
08 0h 00

[1, dim(theta)] [1, K] [k, dim(theta)]

Let’s start by computing the first term:

k

0€ce(hy) O
= | ~hy +10g) exphy
o, on, \ v T8 L SFP T
j=1
1.1 _ exp h;
==yl +Zk exp h;
Means: 1 if i=y, 0 otherwise. Also written as: d;, / j=1 p] ey is the one-hot encoding of v,

eg vector of all O's excepta 1 at
index for ground-truth class y.

afce (h')y)
dh

[1, k]

In vector form: = (z— ey)T, where z = softmax(h)

28

Softmax gradient: chain rule (second term)

Recall: 8 shape is [d, k], x shape

oh T is [d, 1], k is num classes.
To compute the second term — (where h = 8" * x):

a0
07]0,:] * x7 - Ce .
Trq . Observation: Nhi] 0 - . : ohl1 - : :
0T x = 0 [1’.'] *x only depends on ¢ L = lx o - O] L =10 x - 0
: the i-th row of 7. 06 s 06 S
07k, :] * x|

Note: shape is [1, d*k], but for

Tip: X[i,:] means "the i-th row", eg numpy-like notation clarity 've reshaped to [d, K]

Technically, at this point we are "done"! We can calculate each of the terms of this
chain rule expression to get what we want. What could go wrong...?

. oh . _
0¢..(h,y) 0¢.(h,y) Oh Issue: P large! Ex:
) k)

06 oh 90 ImageNet-1k has 1000

classes. Classification with
Shape: [1, dim(®)] (1K [k dim(6)] >10K classes is quite common
now. Can we do better?

29

Recall: 8 shape is [d, k], x shape
is [d, 1], k is num classes.

Trick: exploit structure

. . 8Lce(h, oh
Let's see if we can calculate Cg; Y) \without having to explicitly create — 5"
k) : : : : : : : 0
0¢,.,(h,y) 0h 0¢., Oh[i] (l P 1) Where ¢, = 2% = 7 — ¢,
* = — * = cox O Of+1]|0 ¢ix - O+ .. il
oh 06 £i0ni] 96 A Y

\ Tip: matrix-vector mult A*x can be

: : expressed as scaling the i-th A*x = z Al]
=|cox C1x - Cpx column of A by the i-th entry in x, _ ’
: : : : and summing each scaled column:

_ oy [Pce (2 —e,) What we've done: we've taken
dh Y advantage of the structure of
9 c0(h, dh
N\ | Ocelhy) and = to calculate
Much easier to oh
Observe that: calculate this! agce (h y)
X Yoy, Xy ——=—=1Inan efﬂClent manner.
x1 — xl ! xl ’ _ Shape check: [d, 1] * [1, k] -> [d, k] (which, a6
2| * V1 V2] = %20 2Y2| = |y1X ¥oX when flattened row-wise) leads to [1, d*k]!
X3 X3Y1 X3)2 : :

30

Time, memory complexity

k classes, n input

dimensionality, 04 .. (h, y) 04 .. (h, y) dh
shape(0)=[n, K] 50 = FTA % 30
Shape: [1, nx K] [1, K] [k, n * k]

Approach 1: "naive". Directly instantiate each term, and do matrix multiply.
Approach 2: Exploit structure to calculate efficiently.

S oy e

Approach 1 0(k’n + k) 0(k?*n)

Approach 2 0(nk) O (kn)
' 1

Reduction factor ol e g k

Recall: matrix multiplication
of [m,n] and [n,p] matrix is
O(m*n*p)

Approach 2 is k
times better than
Approach 1 (in both
time and space!)

31

Data point: ResNet-50, ImageNet-1k

ResNet-50: standard convnet (2015) k=1000 classes 0¢ce(hy) 0fce(h,y) . dh
ImageNet-1k: standard image n=1000 (fc6) 00 oh EY:
classification dataset. shape(6)=[n, k]=[1000, 1000]

Shape: [1, nxK] [1, K] [k, n * k]

Approach 1: "naive". Directly instantiate each term, and do matrix multiply.
Approach 2: Exploit structure to calculate efficiently.

Approach 1 O(k’n + k) = 4GB 0(k?*n) Approach 2 is 1000x
times better than
Approach 2 O(nk) =4 MB O (kn) Approach 1 (in both
. time and space!)
1 —
Reduction factor - - ~ I = 1000x k = 1000x

To train a resnet50 model on imagenet1k in pytorch: ~306 MB GPU memory (batchsize=1), (~14 GB batchsize=96)

4 5B to store g—g is way too expensive! batchsize=96 would require 4*96=384 GB (!)

Top-of-the-line GPU cards (server) max out at 80 GB memory (Nvidia H100, ~$25k each as of Jan 2026)
32

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://www.image-net.org/about.php
https://www.image-net.org/about.php
https://www.image-net.org/about.php
https://discuss.pytorch.org/t/resnet-50-takes-10-13gb-to-run-with-batch-size-of-96/117402/2

Softmax gradient: recap

Let h = 87 x (aka pred logits). The softmax loss gradient is:
0fce(hy) _ 0fce(hy) Oh
06 0h il

=X *(Z _ey)T
\

Note: shape should be [1,dim(6)], but here it is
[d, k] for clarity.

Same process works if we use “matrix batch” form of the loss
Volce(X6,y) € RE*K = XT(Z —1,), Z = softmax(X0)

I, is the [B,k] matrix of one-hot
encodings stacked on top of
each other.

X has shape [B, d].

6 shape is [d, k]

Where B is the number of samples in our batch.

33

Putting it all together

Despite a (somewhat long) derivation, it's neat how simple the final algorithm is
* Repeat until parameters / loss converges

1. lterate over minibatches X € R5*" y € {1, ..., k}® of training set
2. Update the parameters 0 := 6 — %XT(Z —I,)

- Y
_ , Step size TN Thsis 2eett?) aka Vgloss(h,y)
That is the entirety of the softmax regression algorithm

As you will see on the homework, this gets less than 8% error in classifying MNIST
digits, runs in a couple seconds

Up next time: neural networks (a.k.a. fancier hypothesis classes)

34

	Intro slides
	Slide 1: Data 188: Introduction to Deep Learning ML Refresher / Softmax Regression
	Slide 2: Announcements
	Slide 3: Enrollment, Waitlist
	Slide 4: Reminder: important links
	Slide 5: Outline

	Basics of machine learning
	Slide 6: Outline
	Slide 7: Machine learning as data-driven programming
	Slide 8: Machine learning as data-driven programming
	Slide 9: Three ingredients of a machine learning algorithm

	Example: softmax regresssion
	Slide 10: Outline
	Slide 11: Multi-class classification setting
	Slide 12: Linear hypothesis function
	Slide 13: Matrix batch notation
	Slide 14: Loss function #1: classification error
	Slide 15: 0-1 loss gradient
	Slide 16: Loss function #2: softmax (aka cross-entropy) loss
	Slide 17: Aside: logits
	Slide 18: Binary Cross Entropy (BCE)
	Slide 19: BCE loss gradient
	Slide 20: The softmax regression optimization problem
	Slide 21: Definition: Jacobians
	Slide 22: Tip: Jacobian "proper" shapes
	Slide 23: Optimization: gradient descent (1/2)
	Slide 24: Optimization: gradient descent (2/2)
	Slide 25: "Stochastic" gradient descent (aka mini-batches)
	Slide 26: The gradient of the softmax objective
	Slide 27: Multivariate chain rule
	Slide 28: Softmax gradient: chain rule (first term)
	Slide 29: Softmax gradient: chain rule (second term)
	Slide 30: Trick: exploit structure
	Slide 31: Time, memory complexity
	Slide 32: Data point: ResNet-50, ImageNet-1k
	Slide 33: Softmax gradient: recap
	Slide 34: Putting it all together

