
Discussion 01 @ 2026-01-27 00:22:38Z

Data 188 Introduction to Deep Learning
Spring 2026 Eric Kim Discussion 01

Welcome to Data 188 - we’re excited to have you here and have some deep conversations with you!
This discussion will cover some matrices, vectors, and gradients review.

1. Matrix Multiplication
Compute each of the following matrix multiplications by hand. If the multiplication is not valid, explain
why.

(a)

[
1 6
7 5

]30
2


(b)

4 3 6
2 1 0
0 5 7


21
3


(c)

0 6 5
2 3 3
5 7 8


1 9
1 4
3 0


2. Jacobians

Recall that the Jacobian (or Jacobian matrix) of a vector-valued function is the matrix of all its first-order
partial derivatives. If f : Rn → Rk is a vector-valued function with n inputs and k outputs, then its Jacobian
or gradient ∇f is an k × n matrix defined as

∇f =


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fk
∂x1

∂fk
∂x2

· · · ∂fk
∂xn



Numerator convention: Note that in this class, we will use the "numerator" convention rather than
the "denominator" convention for the dimensions of the Jacobian. In other courses or textbooks, you
may see that if f : Rn → Rk then ∇f ∈ Rn×k. However, in this course, ∇f ∈ Rk×n.

We call it the "numerator" convention because if we call the input vector x ∈ Rn and the output vector
y ∈ Rk, then each entry of the Jacobian is of the form ∂yi

∂xj
, where the variable in the numerator

corresponds to the output dimension and the variable in the denominator corresponds to the input
dimension. In other words, the Jacobian dimensions are dim(numerator)× dim(denominator).

Discussion 01, © UCB Data 188, Spring 2026. All Rights Reserved. This may not be publicly shared without explicit permission. 1



Discussion 01 @ 2026-01-27 00:22:38Z

Matrix-valued functions: Also note that in this class, we will often work with functions that accept
matrices (not just vectors) as input/output. When we define the Jacobian of these matrix-valued
functions, the "true" shape of the Jacobian is still 2D, not 3D/4D.

Example: Suppose f takes an n × k matrix, and outputs a scalar. Its Jacobian ∇f(x) has shape
1 × n ∗ k, where the first dimension is "flattened" (eg row-wise). Notably, the shape of ∇f(x) is
NOT n× k.

However, for convenience, people often represent ∇f(x) as a matrix (with shape n × k) rather than
as a long vector (with shape 1× n ∗ k). This is fine, as long as you recognize when this happens!

Instructions: For each of the following functions, state the dimensions of the Jacobian and compute it.

(a) f(x, y) =

 x3y
cos2 y + 5x

yex


(b) f(

[
p q
r s

]
) =

[
p+ 4q
sin

(
r2s

)]

3. Deriving the Linear Softmax Gradient Update Equations
Recall from Lecture 2 that we can formulate linear softmax regression as an optimization problem where we
want to find the parameters (aka weights) θ that minimizes the cross-entropy loss function f(θ) using the
gradient descent algorithm. In gradient descent, we iteratively update θ using the gradient update equation:

θ := θ − α∇θf(θ)

where α is the learning rate (aka step size).

In this problem, we will derive the gradient update equation for linear softmax regression step-by-step.

Consider a k-class classification problem where we have:

• Training data: x(i) ∈ Rn, y(i) ∈ {1, . . . , k} for i = 1, . . . ,m

• n = dimensionality of input data

• k = number of classes/labels

• m = number of points in the training set

Our hypothesis function maps inputs x ∈ Rn to k-dimensional vectors h : Rn → Rk where h(x) indicates
some measure of "belief" in how much likely the label is to be class i (i.e., "most likely" prediction is
coordinate i with largest h(x)).

A linear hypothesis function uses a linear operator (i.e. matrix multiplication) for this transformation
hθ(x) = θTx for parameters θ ∈ Rn×k.

To convert the values from our hypothesis function to probabilities (e.g. make sure they are all non-negative
values that sum to 1), we apply the softmax function z to hθ(x):

Discussion 01, © UCB Data 188, Spring 2026. All Rights Reserved. This may not be publicly shared without explicit permission. 2

https://data-188-berkeley.github.io/sp26/assets/lecture_slides/02_softmax_regression.pdf


Discussion 01 @ 2026-01-27 00:22:38Z

zi = p(label = i) =
ehi(x)∑k
j=1 e

hj(x)

Then the cross-entropy loss function lce is defined as:

lce(h(x), y) = − log p(label = y)

= − log zy

= − log
ehy(x)∑k
j=1 e

hj(x)

= −(log ehy(x) − log
k∑

j=1

ehj(x))

= −hy(x) + log

k∑
j=1

ehj(x)

= f(θ)

Recall the multivariate chain rule for computing the derivative of a composition of functions. Let h = θTx.
We can compute ∇θf(θ) by breaking it down into the product of 2 partial derivatives:

∇θf(θ) =
∂lce(h, y)

∂θ

=
∂lce(h, y)

∂h
· ∂h
∂θ

(a) Show that ∂lce(h,y)
∂h = (z − ey)

T where ey is the one-hot vector with a 1 in coordinate y and 0s
elsewhere.
Hint 1: Start by computing ∂lce(h,y)

∂hi
and then generalize that into vector form.

Hint 2: How does the expression in Hint 1 differ when i = y versus when i ̸= y?

(b) Compute ∂hi
∂θ .

(c) Recall that in practice, we do not want to compute ∂h
∂θ directly because it would take too much compute

time and memory. Instead, we can use the results from parts (a) and (b) and take advantage of structure
to compute ∇θf(θ) more efficiently.
Hint 1: A matrix-vector multiplication Ax can be expressed as scaling the i-th column of A by the i-th
entry in x and summing each scaled column. That is, Ax =

∑n
i=1A:,ixi where A:,i is the i-th column

of A.
Hint 2: It can be useful to define a vector c = ∂lce

∂h and let ci be its i-th entry.

Discussion 01, © UCB Data 188, Spring 2026. All Rights Reserved. This may not be publicly shared without explicit permission. 3



Discussion 01 @ 2026-01-27 00:22:38Z

Hint 3: A matrix of the form 
...

...
...

...
v1u v2u · · · vku
...

...
...

...


where u and v are column vectors can be expressed as u ∗ vT .

Contributors:

• Rebecca Dang.

Discussion 01, © UCB Data 188, Spring 2026. All Rights Reserved. This may not be publicly shared without explicit permission. 4


